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Decompactification limit
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Light-cone gauge-fixed string sigma-model in the limit P+ — oo
The Hamiltonian H ~ P_ expands in powers of fields

P+ 1 1 oo
H = / d (H2 + 77‘(4 + —Hg+ -+~ ) P+:> massive theory on 2dim plane
—P_|_ b ?

P ~ the generator of rigid —rotations is non — vanishing (theory is off — shell)



Off-shell Symmetry Algebra

Symmetry algebra of H in the infinite-volume limit:
psu(2(2) @ psu(2)2) e Hae P

[ Frolov, Plefka, Zamaklar and G.A. hep-th/0609157]

[In Gauge Theory: Beisert hep-th/0511082]
One copy of the centrally extended psu(2|2) algebra contains

R.”; L% generate two su(2) subalgebras
Q.% Q> are supersymmetry generators

H, C, CT are three central elements



Algebra relations

a a 1 a .
(Qu5QI7) = PR+ AL+ H.

(Qa% Q% = tupt®C; {Ql™ Q%) = t,1*P CI

Central charge

C = lig(e’® — 1)e?*

Here P is the operator of total momentum

The phase » is related to the value of x_(—o0)

The algebra admits a U(1)-automorphism

Q—e“Q; C—e*C



Degrees of Freedom and Scattering

The symmetry algebra of H in the infinite-volume limit contains

psu(2]2) @ psu(2]2)

In the light-cone gauge there are 16 physical degrees of freedom

16 = 8 bosons + 8 fermions ~ X: ; ;i =1;:::;4
——

16 x 16 = 16 x 16

Size of the full S-matrix

One copy, S¥/

.7 » scatters fundamental irreps of psu(2|2)



Assume that quantum string is integrable and
world-sheet scattering is factorized

Use symmetries to constrain the S-matrix



The S-matrix
Introduce the in-basis and the out-basis as

p1,pas o)t = AL (p1) - AT (02)[0), p1>pa > > pa
p1op2, o)M= AL (pn) o AL (0)[0), p1>p2 > > pa
P1 P2 P3 P4
t
P4 P3 P, P1

In the scattering process the in-state goes to the out-state

(in

P15 25 Pn ),

(out) .

— P13 Pa)g, i

O



Scattering

P15 5 Py,

We expand initial states on a basis of final states

In particular, the two-particle in- and out-states are related by

\p1,p2>(m)_S |p1’p2>(0ut) Skl(p p2> \p1,p2>(out)

two— bodyS matrix

or by using the explicit basis

Al(p1)AT(p2)[0) = S - Al(p2)Al(p1)[0) = SE (p1; p2) Al (p2) AL (p1)[0)



The conventional Zamolodchikov algebra

Al(p1)AL(p2) = SE (p1; p2) Al (p2) AL (p1)

e Inabsence of interactions S/ = +66% <« graded unity

e In many known cases, for p; = p2 the S-matrix turns into to the “minus permutation”.
This reflects the absence of two-soliton state with equal momenta.

Generally, one could define a “twisted" Zamolodchikov algebra

Al(p)A(p2) = Sk} (pr: p2) A (p2) AL, (p1)UL ™
where U is a tensor operator which leaves the vacuum invariant

b7
U'L'C;,an ‘O>

=51 =1'10)

Introduce A A (p)E*; A A'(p)E;
row column

10



Yang-Baxter Equation

ATAl = AlATS),
Two different ways of reordering ATAIAl to AIATAT give

ATATAL = AIATATS 55,5505 ATATAL = AIATATS,5S,5S,,
P1 P2 P3 P1 P P3
S12 S3
e S o
t
p3 p2 P1 p3 pz P1
S23513512 S125135:3

Absence of new cubic relations implies the Yang-Baxter equation

S23(P2; P3)S13(P1; P3)S12(P1; P2) = S12(P1; P2)S13(P1; P3)S23(P2; P3)
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Symmetries of the S-matrix

The Hamiltonian H commutes with generators J2 of c.e. psu(2|2)
J2-10) =0
I AL(P)[0) = 37 (P)A}(P)[0)
J* - Al(p1)Al(p2)[0) = 327 (p1; p2) AL(P1A] (p2)[0)

The invariance condition for the S-matrix is derived from

32 - Al (p1)AT(p2)[0) = SH (p1; p2) I2 - Al (p2) A (p1)]0)

This is the following condition

S12(P1; P2)Ifa(P1; P2) = JI31(P2; P1)S12(P1; P2)
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Fundamental Representation of c.e. psu(2|2)

[Beisert hep-th/0511082]

Introduce a basis of the 4dim fundamental representation
N lea), a=1,2
ei) = { lea), a=3,4

Realization of the supersymmetry generators by 4 x 4 matrices

Q4 = aES +bES! Q =cE? +dE}
Q) =aE! —bE} Q. = —cES? +dE* e 1
Qi =aBE7 —bES* Qs = —cE/'! +dE,’
Q2 =aE? +bE? Qs = cEj' + dES!
Central charges: H = ad + bc; C =ab; CT =cd

Rep. is unitary if
d* =a; c*=b

13



Parameters of the irrep are combined into a matrix

a b
h = ( o ) e SU(1,1)

Not all values of the central charges are allowed since
H? —4CC* =1

Central charges are parametrized by a real H and by a phase of C

. e'Ya e b
An automorphism h — ,

e'Pc e "Pd

does not affect the charges and reflects a choice of the basis
The space of central charges is the two-sheeted hyperboloid

SU(1;1)=U(1)
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Fundamental Unitary Irrep V (p, ()

1 + xr
o=y o=\ 55 o= =\ 3505

The constraint ad — bc = 1 implies that x* satisfy

Comparing

+ L
C:ab:%igc<z_——1) = C=1ige® (" 1), €E=z_(—o0)

7

'

string sigma—model

ol _ gip: t =%

8

Central charge H gives the (BDS) dispersion law
H” =1+ 4g° sin2(§) = w(p)?
The parameter - reflects a freedom in the choice of the basis
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Unitarity requires that p is real and

g eQif; . — \/ix— — ix+ei(€+90)

where ” and » are real parameters.

To summarize:

e Central charges depend on p and » only

e The phase ” correspond to a choice of the basis

The most symmetric choice correspond to * =0 since Q% ~ et
We call it the string choice . It leads to the standard YB and ZF

Other choices are also possible. They lead to twisted YB and ZF

16



Representation of c.e. psu(2|2) in the Fock Space

The central charges P and H are additive

P|Aiy (p1) -+ Aiy (Pn)) = D prlAig (1) - Agy (P))
k=1

n

H|Ai; (p1) -+ Aipy (pn)) = D w(pk) |Ai; (p1) .- Aiy (Pn))

k=1
dispersion

P and H belong to the commutative subalgebra

I, = / q(p)Al (p)A’(p)
Commutation relations

PAT = pAT + ATP  PA = —pA + AP

17



Representation of c.e. psu(2|2) in the Fock Space

What about additivity of C?
States |A!(p)) depend on momentum p only. Identify

AT(p)) = |e;); Dasis of V (p; 1)

CIAl(p)) = 3ig (€™ — 1)|Al,(p) — t=e*=1

Further, we would like to identify

Al (p1)AL (p2)) ~V (P13 1) ® V (p2; )

which leads to

CIA! (p1)A] (p2)) = Lig(e™™ — )AL (p1)AL (p2))
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On the other hand, the additivity of C implies
CV (1,1 ® Vb2, Ga) = 5ig (G = 1)+ G2 = D) V(p1,G1) ® Vipe, &)
which result in
e!Prtp2) 1 — 1 (eP1 — 1) + 1y (eP2 — 1)
Two solutions for 1, lying on the unit circle
(f1=e?2; f, =1}; or {t;=1; 1, =e?}
The first solution can be interpreted as the braiding relation
CAl(p) = C(PAI(p) e + Al(p) C
The second solution corresponds to

CA!(p) =C(p)Al(p) +e”Al(p) C

19



Braiding

Two-particle representation given by the standard coproduct

323 (P1:p2) = 327 (pr; €1)= + (1) E320 (s cp)

"~

statistics

where c; denote central charges on “one-particle” representations

The coproduct can be reinterpreted as a non-trivial braiding
between symmetry generators and ZF oscillators

J2AL(p) = 3" (PAL(R)ORT (p: P) + (~1) AL (p)OFT (p; P)I®

Conditions on the braiding factors © are

IPE (p1)OFT (p1;p2) = I2F(prsca);  OF(p1;p2)IPH(p2) = -"3%% (p2; C2)

20



Invariant S-matrix

S12(P1;P2)I T2 (P15 P2) = I31(P2; P1)S12(P1; P2)

Let J(p; f; *) be a generator of the fund. unitary irrep of c.e.
psu(2|2)

S12(P1;P2) (I (p1;€7%; 7 1) @I+ L@ I(p2; 1; 72)) =
(J(p1;1;71) @ X +1® I (p2; e 72))S12(p1; P2)

Here ¥ = diag(1; 1; —1; —1) takes care of statistics

21



For the string symmetric choice leading to the canonical S-matrix
one takes

STRING THEORY BASIS : T ="9="1="9=0

For the “spin chain” choice (the Beisert S-matrix,
hep-th/0511082) one takes

SPIN CHAIN BASIS: a=71=0; Ti=-2: Ty=--

Introduce - = Vix— — ixt and

- 7

2 = -(p2)ez"

~

1= -(pl)e%m; o= -(pP2); “1=-(P1);

22



— _ _+
T - nin
S(p1,p2) = —F— %1 M > (Bi ® B{ + B3 ® B3 + Ef ® B3 + B3 ® B])
ry —xy N172
(2] —2]) @y — =)=y +=) ning
pl o2 22 (B1 ® B3 + B3 ® By — BY ® By — B3 ® BY)

2f) ey ey —afe])  Ahs
- (B} ® B§ + E] ® E] + B3 ® Bf + B} ® E3)
21 )2y — ) (=] +aF)

<wf-—w§xw1x;-—w?w§>

3 4 4 3 4 3 3 4
(E3®E4—|—E4®E3—E3®E4—E4®E3)

a:2_—:c1_n1
+ = L (El®E3+E1®E4—|—E2®E3—|—E2®E4)
Ty — Xy 71
”1‘_—5";”2 3 1 4 1 3 2 4 2
+ = +T<E3®E1+E4®E1+E3®E2+E4®E2)
Ty —xgy 72
(ac_—x+)(x —ac+)(x+—ac )
+i—L 1+2 2.1 2 (Ei"®E§+E§®E‘1"—E§®E§’—E§’®E§)
(wl —:132)(1—£B1 xg) 172
— (ot ot
. x| Ty (T — x5 )N1N2
tip 2= (B3 ® By + B3 © B3 — By ® By — By ® )
z] xg (x] —x5)(1 —x) 5 )
_|_ —_
r{ —x, M2
+ +—L —=(5{ ® B3 + B{ ® By + B3 @ E} + E5 ® Ej )
T, —xy 1M1
x;_"”g_"l 1 3 1 4 2 3 2 4
+ 2 —2 — (B30 EB{ + B; ® B] + B} @ B3 + B} © Ej)
T1 T T M2
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Symmetry Generators and ZF Operators

STRING THEORY BASIS: L,"AT(p) = AT (p) L° + AT(p) L,",
R.7AT(p) = AT(p) R + AT(p)R.”
Q."AT(p) = AT(P) QL(p) 'T? + AT(P) 2 Qu”,
QAT (p) = AT QL (p) e T2+ AT 2 QL

SPIN CHAIN BASIS: L."AT(p) = AT(p) L® + AT(p) L,",
R.”AT(p) = AT(p) RS + AT(p) R.7 |
Q."AT(p) = AT(p) QL(p) O(P) + AT(p) 2 Q.°,
QAT (p) = AT (M QL (p)O(P) + AT ()2 QL™

where the braiding factors ©(P) and ©(P) are the diagonal matrices

O(P) = diag(1,1,e'7,e'F),  O@P)=e TOWP).
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Twisting ZF algebra

Af(p) — Af(p)U(P;p); A(p) — UT(P;p)A(p)

ZF algebra keeps its form but with an operator-valued S-matrix

S5 (p1;p2; P) = Ua(P + p1; p2)Us (P; p1)S12(p1; p2)Ud (P; po)US (P + pa; py)

Taking U(P;p) = U(P) = diag(ez¥;ezP;1;1) relates gauge and
string choices

Sehain (p1:pa) = Ua(p1)Sy "8 (py; p2)U] (p2)

For S;; = S¢™(ps; p;) one finds the twisted YB equation

Fa3(Pp1)S23F55" (p1)S13F12(p3)S12F 15" (P3) = S12F13(p2)S13F 5" (P2)S23
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Crossing Symmetry

The complete S-matrix

S(p1;P2) = So(p1; P2) S(p1;Pa)

prefactor

Compatibility condition of the ZF algebra
AA; = SpAA; AIAL = AIATS,: AAL = AlSyH AL + -1

Find the conditions on S(p1; p2) under which the ZF algebra admits
an automorphism

A'(p) — BT (p) = A*(—p)€(—p); A(p) — B(p) =€ (—p)AT(—p);

where %' (p) is a “charge-conjugation” matrix.
This automorphism is the “particle-to-antiparticle” transform

26



Require the transform to be compatible with the psu(2[2)-symmetry
(braiding relations!). This leads to

¢(p)L,=-L;¢(p)  €(P)Ry=-R5%(p)

and
vy e ~ t
e 44 (p)Qu(-p) = — (Qi(p)) TE(p)
¢(p) Qa(—p) = —e~"% (QL(P))" E(p)
Susy generators of anti-particle irrep are anti-hermitian: (Q% (—p))" = — Q% (—p)

Equations are solved for the charge-conjugation matrix ¢

() 0
“l) = ( 0 —isign(p) o2 > ,

where 5 one of the Pauli matrices

27



Parameters of the anti-particle representation

£b(p)signp  ¢(—p) = —ieFd(p) signp
Fa(p)signp  d(—p) = —ieFc(p) signp

Central charges of the anti-particle representation are

H(-p) = —H(p); C(-p)=—-C(pe”"?; C(—p)' =—-C(p)le”:

If we assume that p; > po then the S-matrix must obey

Cgl_l(_pl)g%(pl; P2)61(—P1)S12(—p1;P2) =
C52_1<_p2)‘5521<p2; P1)Ga(—P2)S21(—p2;p1) =1

28



Crossing Equation

Substituting our string S-matrix we find the following equation for
the scalar factor

)
So(—P1;P2)So(P1;P2) =
(%)

[ Janik, hep-th/0603038]

Relation to the “dressing phase" through

+ — 1 %
Xo — X -
N2 2 1 RIS
SO(pl,p2) _ X+ — 11 2 gl (p1,p2)
1 2 xl_m2+

[Frolov and G.A., hep-th/0604043]
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Dressing v.s. Crossing

n 1—n

O(p1,p2) = > crs(9) ar(pp)as(2),  crslg) = > g

r,s=2 n=0
where
cq(h?g = Or41,s = Tree — level
[Frolov, Staudacher and G.A, 0406256]
1—(=1)"ts —1)(s —1
O A== (r-1(s—1) - One loop
’ T (r+s—2)(s—1)

[Hernandez and Lopez, hep-th/0603204]

These two leading orders satisfy the crossing equation up to @ (1/g>)
[Frolov and G.A., hep-th/0604043]

All Loop Proposals for the Dressing Phase
[Beisert, Hernandez and Lopez, hep-th/0609044]
[Beisert, Eden and Staudacher, hep-th/0610251]
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String S-matrix
obeys the standard Yang-Baxter equation
5238513812 = 5128513823

obeys the unitarity condition

S12(p1,p2)S21(p2,p1) =1

obeys “hermitian analyticity”

83, (p2,p1) = S12(p1,p2)

obeys the crossing symmetry (% is the charge conj. matrix)

€ ' Sii(p1,p2)61S12(—p1,p2) =1
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Further Properties

Crossing twice gives
Al(p) = Af(p)Z; A= TA(p)
The ZF algebra implies
A1As; = S515AA1 = [S1a(p1;p2); X2 ® X =0;

where ¥ = diag(1;1; —1; —1)

Under the shift p — p + 2.. the S-matrix exhibits the monodromies

Si2(p1;pP2 +2..) = —S12(p1;p2)>1
Si2(P1 +2.;p2) = —32S12(P1;P2)

32



Graded Inverse Scattering Method

Define the fermionic S-operator as

S(pl; p2) _ (_1>7Tj+77k3(77i+77l) Sq;kjl(pl; p2) Eki®Elj

graded unities

It obeys the graded YB and the crossing relation

(gl_l(_pl)gigl(pl; P2)E1(—P1)S12(—p1;p2) =1

The graded YB allows to consistently define the relations between
the matrix elements of a “would be" quantum monodromy matrix

S12(P1; P2)T1(P1)T2(p2) = T2(p2)T1(P1)S12(P1; P2)

33



Supertransposing we get

T3 (p1)S1% (P15 P2)T2(P2) = T2(p2)ST5 (P15 P2) T (p1) :

Compare to

T7 ' (—p1)Siz (—P1;P2) T2(p2) = T2(p2)Sis (—P1;P2)T1 ' (—p1)

Monodromy matrix algebra is consistent with the relation

T(=p) ' ~ € (=p)T*(p)&(~P)
Leads to description of the center of the STT-algebra

[ Frolov, Leeuw and G.A., in progress]
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Local and Non-local Charges

The S-matrix allows to reconstruct the representation of c.e.
extended psu(2|2).

A 4-dim rep of STT-algebra is provided by the S-matrix itself:

T1(p1; ) = S13(p1:ps) with  ps = —

spec. par.
Around p3 = 0 the STT-algebra produces (non-)local charges

S12 (:92_31 31_318331332%_‘_?2_3183523,) = (:91_3133513/4-:91_31 52_3133523513/>512

B®.J 1Q J J QI BRJ

[ ala Bernard and LeClair]

Expand YB further and get the higher (non-local) symmetries
commuting with the S-matrix. No restriction for the dressing phase!
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Summary

Symmetries of the gauge-fixed string sigma-model are used to
find the S-matrix

The S-matrix fits the axioms of massive integrable systems

Particle-to-antiparticle transform is an automorphism of the ZF
algebra provided the S-matrix obeys crossing symmetry

In the large tension limit the S-matrix perfectly agrees with the
near-plane wave S-matrix

[Klose, McLouglin, Roiban and Zarembo, hep-th/0611169]
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