Symmetries Related to AdS/CFT Integrability

Niklas Beisert

MPI für **Gravitat**ionsphysik Albert-**Einstein**-Institut Potsdam, Germany

Paris, June 20, 2007

Collaborations with P. Koroteev, F. Spill, B. Zwiebel.

References: nlin.SI/0610017, arxiv:0704.0400, work in progress.

Introduction

Planar $\mathcal{N}=4$ SYM & strings on $AdS_5 \times S_5$ are presumably integrable. Integrable models are undoubtedly very nice physical models.

Moreover: Integrability is a hidden symmetry.

Understand symmetry algebra to understand the model.

This talk: Loosely connected aspects of symmetries, mostly $\mathfrak{psl}(2|2)$.

Outline:

- Lie Symmetries
- Affine Algebras and Deformations
- Yangian
- Quantum Deformations
- Degeneracies in the $\mathfrak{psu}(1,1|2)$ Sector.
- Conclusions

Symmetry

AdS/CFT Particle Model(s)

String Theory: Light cone gauge using AdS_5 -time and S^5 -great circle.

• Vacuum: Point-particle moving along time and great circle.

- Excitations: 4 coordinates on AdS_5 and 4 coordinates on S^5 .
- Fermions: 32 coordinates, 1/2 momenta, 1/2 gauged away, 8 remain.

Gauge Theory: Spin chain states with few "excitations".

- Vacuum: Half-BPS state $|0\rangle = |\dots ZZZ\dots\rangle$ (ferromagnetic vacuum).
- One-excitation states with excitation \mathcal{A} of momentum p

$$|\mathcal{A}, p\rangle = \sum_{a} e^{ipa} | \dots \mathcal{Z} \dots \overset{a}{\mathcal{A}} \dots \mathcal{Z} \dots \rangle, \qquad \delta \mathcal{H} | \mathcal{A}, p\rangle = \delta E_{\mathcal{A}}(p) | \mathcal{A}, p\rangle.$$

(4+4|4+4) flavours of excitations $\mathcal{A} \in \{\phi_i, \mathcal{D}_\mu \mathcal{Z} | \psi_a, \psi_{\dot{a}}\}.$

 \bullet Other spin orientations $\mathbb{V}_{\mathbf{F}}$ are multiple coincident excitations.

QM particle model of 8 bosonic and 8 fermionic flavours on the circle.

Residual Symmetry $\mathfrak{psu}(2|2)$

Excitations transform as $(2|2) \times (2|2)$ of $\mathfrak{psu}(2|2) \times \mathfrak{psu}(2|2)$.

Consider just (2|2) flavours and one copy of $\mathfrak{psu}(2|2)$. Generators:

- \Re^a_b : $\mathfrak{su}(2)$ subalgebra of S^5 /internal symmetry.
- $\mathfrak{L}^{\alpha}{}_{\beta}$: $\mathfrak{su}(2)$ subalgebra of $AdS_5/$ conformal symmetry.
- $\mathfrak{Q}^{\alpha}_{b}$: 4 (Poincaré) supercharges.
- $\mathfrak{S}^a{}_{\beta}$: 4 (conformal) supercharges.

 $\mathfrak{psu}(2|2)$ has three-dimensional (exceptional!) central extension.

Need this central extension $\mathfrak{h}:=\mathfrak{psu}(2|2)\ltimes\mathbb{R}^3$ for consistency: $\left[\begin{smallmatrix}\mathrm{NB}\\\mathrm{hep-th/0511082}\end{smallmatrix}\right]$

- C: Hamiltonian/dilatation generator (up to integer shift).
- \mathfrak{P} : world sheet shift in $\sigma/(\text{classical})$ gauge variation.
- \Re : world sheet shift in $\sigma/(quantum)$ gauge variation.

Lie Algebra $\mathfrak{psu}(2|2)\ltimes\mathbb{R}^3$

Lie superalgebra defined by Lie brackets

- $\mathfrak{R}^{a}_{b}, \mathfrak{L}^{\alpha}_{\beta}$: canonical brackets of $\mathfrak{su}(2) \times \mathfrak{su}(2)$ generators.
- $\mathfrak{C}, \mathfrak{P}, \mathfrak{K}$: central charges.
- $\mathfrak{Q}^{\alpha}{}_{b}$, $\mathfrak{S}^{a}{}_{\beta}$: supercharges

$$\begin{split} \{\mathfrak{Q}^{\alpha}{}_{b},\mathfrak{S}^{c}{}_{\delta}\} &= \delta^{c}_{b}\mathfrak{L}^{\alpha}{}_{\delta} + \delta^{\alpha}_{\delta}\mathfrak{R}^{c}{}_{b} + \delta^{c}_{b}\delta^{\alpha}_{\delta}\mathfrak{C}, \\ \{\mathfrak{Q}^{\alpha}{}_{b},\mathfrak{Q}^{\gamma}{}_{d}\} &= \varepsilon^{\alpha\gamma}\varepsilon_{bd}\mathfrak{P}, \\ \{\mathfrak{S}^{a}{}_{\beta},\mathfrak{S}^{c}{}_{\delta}\} &= \varepsilon^{ac}\varepsilon_{\beta\delta}\mathfrak{K}. \end{split}$$

Fundamental Representation

Have (2|2) flavours of particles $\{|\phi^a\rangle, |\psi^\alpha\rangle\}$. Represent algebra! $\begin{bmatrix} NB \\ hep-th/0511082 \end{bmatrix}$ Most general action compatible with $\mathfrak{su}(2) \times \mathfrak{su}(2)$

$$\mathfrak{Q}^{\alpha}{}_{b}|\phi^{c}\rangle = a\,\delta^{c}_{b}|\psi^{\alpha}\rangle, \qquad \mathfrak{S}^{a}{}_{\beta}|\phi^{c}\rangle = c\,\varepsilon^{ac}\varepsilon_{\beta\delta}|\mathcal{Z}^{-}\psi^{\delta}\rangle,$$

$$\mathfrak{Q}^{\alpha}{}_{b}|\psi^{\gamma}\rangle = b\,\varepsilon^{\alpha\gamma}\varepsilon_{bd}|\mathcal{Z}^{+}\phi^{d}\rangle, \qquad \mathfrak{S}^{a}{}_{\beta}|\psi^{\gamma}\rangle = d\,\delta^{\gamma}_{\beta}|\phi^{a}\rangle.$$

Markers \mathcal{Z}^{\pm} represent (dynamic) insertion/deletion of vacuum field \mathcal{Z}

- derived from action of supercharges in gauge theory,
- $\mathfrak{P}, \mathfrak{K}$ are gauge transformations iff $P, K \sim (1 e^{\pm ip})$.

Imposing consistency of superalgebra

- fixes central charges $C = \frac{1}{2}(ad + bc)$, P = ab, K = cd,
- ullet yields constraint ad-bc=1 or $C^2-PK=rac{1}{4}$,
- provides dispersion relation $C^2 = \frac{1}{4} + 4g^2 \sin^2(\frac{1}{2}p)$.

Coproduct

Coproduct Δ defines how some generator \mathfrak{J}^A acts on multi-particle states.

Coproduct $\Delta : \mathrm{U}(\mathfrak{h}) \to \mathrm{U}(\mathfrak{h}) \otimes \mathrm{U}(\mathfrak{h})$ adds one site. Chain: $\Delta^{L-1}(\mathfrak{J})$.

Trivial coproduct (tensor product action): $\Delta(\mathfrak{J}^A) = \mathfrak{J}^A \otimes 1 + 1 \otimes \mathfrak{J}^A$.

Action of markers \mathcal{Z}^{\pm} equivalent to non-trivial coproduct

$$\Delta(\mathfrak{J}^A) = \mathfrak{J}^A \otimes 1 + \mathfrak{U}^{[A]} \otimes \mathfrak{J}^A.$$

Gradings: $[\mathfrak{P}] = +2$, $[\mathfrak{Q}] = +1$, $[\mathfrak{S}] = -1$, $[\mathfrak{K}] = -2$.

Abelian braiding generator \mathfrak{U} measures momentum $e^{ip/2}$.

Coproduct of braiding element: $\Delta(\mathfrak{U}) = \mathfrak{U} \otimes \mathfrak{U}$.

Non-trivial coproduct due to

- length of the spin chain changing or
- non-locality in $x_- = \int d\sigma x'_-$ for string light cone gauge.

Arutyunov, Frolov Plefka, Zamaklar

Cocommutative Hopf Algebra

S-matrix S permutes two particles (modules) A, B

$$S: \mathbb{A} \otimes \mathbb{B} \to \mathbb{B} \otimes \mathbb{A}$$
.

Can the S-matrix be invariant? Quasi-cocommutativity:

$$\mathcal{S} \circ \Delta(\mathfrak{J}^A) = \Delta(\mathfrak{J}^A) \circ \mathcal{S}.$$

Center: Matrix form of S irrelevant. Need $\mathfrak{P}_1 + \mathfrak{U}_1^2 \mathfrak{P}_2 = \mathfrak{P}_2 + \mathfrak{U}_2^2 \mathfrak{P}_1$. Works in general only if central elements are identified [Plefka Spill Torrielli]

$$\mathfrak{P} = g\alpha^{+1}(1 - \mathfrak{U}^{+2}), \qquad \mathfrak{K} = g\alpha^{-1}(1 - \mathfrak{U}^{-2}).$$

Trade in two independent charges $\mathfrak{P},\mathfrak{K}$ for one momentum charge \mathfrak{U} . No constraint on energy \mathfrak{C} (only through shortening $C^2 - PK = \frac{1}{4}$).

Fundamental S-Matrix

Invariance $S \circ \Delta(\mathfrak{J}^A) = \Delta(\mathfrak{J}^A) \circ S$ fixes S-matrix up to phase.

Tensor product of two fundamentals irreducible!

$$\langle p_1 \rangle_{\mathbf{4}} \otimes \langle p_2 \rangle_{\mathbf{4}} = \{0, 0; p_1, p_2\}_{\mathbf{16}} = \langle p_2 \rangle_{\mathbf{4}} \otimes \langle p_1 \rangle_{\mathbf{4}}$$

S-matrix equivalent to Shastry's R-matrix of 1D Hubbard model. [nlin.SI/0610017]

Consider **YBE** $S_{12}S_{13}S_{23} = S_{23}S_{13}S_{12}$. YBE involves tensor product

$$\langle p_1 \rangle_{\mathbf{4}} \otimes \langle p_2 \rangle_{\mathbf{4}} \otimes \langle p_3 \rangle_{\mathbf{4}} = \{0, 1; p_1, p_2, p_3\}_{\mathbf{32}} \oplus \{1, 0; p_1, p_2, p_3\}_{\mathbf{32}}.$$

Check for both components: $|\phi_1^1\phi_2^1\phi_3^1\rangle$, $|\psi_1^1\psi_2^1\psi_3^1\rangle$. Trivial!

Nevertheless, still have to do a little work to prove YBE. Representation theory of full integrable symmetry should imply YBE. Need larger symmetry: Yangian?!

Loop Algebras

Particle Models & Loop Algebras

Consider a generic integrable particle model.

Particles have flavour A and momentum p.

Understand flavour A as module of Lie algebra. What is p algebraically? Answer: Evaluation parameter for a representation of a loop algebra.

The loop algebra (infinite-dimensional) $\{\mathfrak{J}_n^A\}$ of some Lie algebra $\{\mathfrak{J}^A\}$:

$$\left[\mathfrak{J}_{n}^{A},\mathfrak{J}_{m}^{B}\right]=\left[\mathfrak{J}^{A},\mathfrak{J}^{B}\right]_{n+m}.$$

Evaluation representations (finite-dimensional) defined as

$$\mathfrak{J}_n^A | \mathcal{A}, p \rangle = p^n \mathfrak{J}^A | \mathcal{A}, p \rangle.$$

Tensor products of evaluation representations are typically irreducible! \Longrightarrow S-matrix & YBE follow from representation theory.

S-Matrices & YBE

S-matrix S permutes two particles (modules) A, B

$$\mathcal{S}: \mathbb{A} \otimes \mathbb{B} \to \mathbb{B} \otimes \mathbb{A}$$
.

- The tensor products $\mathbb{A} \otimes \mathbb{B}$ and $\mathbb{B} \otimes \mathbb{A}$ are irreducible.
- Quasi-cocommutativity: $\mathbb{A} \otimes \mathbb{B}$ and $\mathbb{B} \otimes \mathbb{A}$ are isomorphic.

S-matrix is the unique intertwiner (up to one overall factor: phase)

$$\mathcal{S} \circ \Delta(\mathfrak{J}_n^A) = \Delta(\mathfrak{J}_n^A) \circ \mathcal{S}.$$

Proof of Yang-Baxter equation:

$$\mathcal{S}_{\mathbb{A}\mathbb{B}}\mathcal{S}_{\mathbb{A}\mathbb{C}}\mathcal{S}_{\mathbb{B}\mathbb{C}}:\mathbb{A}\otimes\mathbb{B}\otimes\mathbb{C} o\mathbb{C}\otimes\mathbb{B}\otimes\mathbb{A},$$

$$\mathcal{S}_{\mathbb{BC}}\mathcal{S}_{\mathbb{AC}}\mathcal{S}_{\mathbb{AB}}:\mathbb{A}\otimes\mathbb{B}\otimes\mathbb{C}\to\mathbb{C}\otimes\mathbb{B}\otimes\mathbb{A}.$$

Map unique (up to overall factor) \Longrightarrow YBE (almost).

Yangian Algebras

Loop algebra: Has trivial coproduct $\Delta(\mathfrak{J}_n^A) = \mathfrak{J}_n^A \otimes 1 + 1 \otimes \mathfrak{J}_n^A$. Intertwiner $\mathbb{A} \otimes \mathbb{B} \to \mathbb{B} \otimes \mathbb{A}$ is trivial: $\mathcal{S} \sim \mathcal{P}$ (permutation operator).

Yangian: deformation of half of a loop algebra $(\mathfrak{J}_n^A, n \geq 0)$. Generated by $\mathfrak{J}^A = \mathfrak{J}_0^A$ and $\widehat{\mathfrak{J}}^A = \mathfrak{J}_1^A$. Coproduct:

$$\Delta(\mathfrak{J}^A) = \mathfrak{J}^A \otimes 1 + 1 \otimes \mathfrak{J}^A,$$

$$\Delta(\widehat{\mathfrak{J}}^A) = \widehat{\mathfrak{J}}^A \otimes 1 + 1 \otimes \widehat{\mathfrak{J}}^A + f_{BC}^A \mathfrak{J}^B \otimes \mathfrak{J}^C.$$

Coproduct now depends on the order of particles through $\mathfrak{J}^B \otimes \mathfrak{J}^C$. Yangian has non-trivial S-matrix. Evaluation representations:

$$\widehat{\mathfrak{J}}^A | \mathcal{A}, p \rangle = (u(p) + u_0) \, \mathfrak{J}^A | \mathcal{A}, p \rangle, \qquad u(p) = \frac{1}{2} \cot(\frac{1}{2}p).$$

Double Yangian: deformation of full loop algebra. **Quantum-Deformed Affine Algebra:** Similar, but also \mathfrak{J}^A deformed.

Yangian

Yangian $\mathsf{Y}(\mathfrak{psu}(2|2)\ltimes\mathbb{R}^3)$

Need to find a $\widehat{\mathfrak{J}}^A$ to enhance \mathfrak{J}^A of $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$. Coproduct of \mathfrak{J}^A is braided by \mathfrak{U}

$$\Delta(\mathfrak{J}^A) = \mathfrak{J}^A \otimes 1 + \mathfrak{U}^{[A]} \otimes \mathfrak{J}^A.$$

Educated guess for braided coproduct of $\widehat{\mathfrak{J}}^A$

NB arxiv:0704.0400

$$\Delta(\widehat{\mathfrak{J}}^A) = \widehat{\mathfrak{J}}^A \otimes 1 + \mathfrak{U}^{[A]} \otimes \widehat{\mathfrak{J}}^A + f_{BC}^A \mathfrak{J}^B \mathfrak{U}^{[C]} \otimes \mathfrak{J}^C.$$

Coproduct of central elements

$$\Delta(\widehat{\mathfrak{C}}) = \widehat{\mathfrak{C}} \otimes 1 + 1 \otimes \widehat{\mathfrak{C}} + \mathfrak{PU}^{-2} \otimes \mathfrak{K} - \mathfrak{KU}^{+2} \otimes \mathfrak{P},$$

$$\Delta(\widehat{\mathfrak{P}}) = \widehat{\mathfrak{P}} \otimes 1 + \mathfrak{U}^{+2} \otimes \widehat{\mathfrak{P}} - \mathfrak{CU}^{+2} \otimes \mathfrak{P} + \mathfrak{P} \otimes \mathfrak{C},$$

$$\Delta(\widehat{\mathfrak{K}}) = \widehat{\mathfrak{K}} \otimes 1 + \mathfrak{U}^{-2} \otimes \widehat{\mathfrak{K}} + \mathfrak{CU}^{-2} \otimes \mathfrak{K} - \mathfrak{K} \otimes \mathfrak{C}.$$

Center is cocommutative if $\mathfrak{P}, \mathfrak{K}, \widehat{\mathfrak{P}}, \widehat{\mathfrak{K}} \sim (1 - \mathfrak{U}^{\pm 2})!$

Invariance of S-Matrix

Define evaluation representation

$$\widehat{\mathfrak{J}}^A|\mathcal{A},p\rangle = ig(u(p) + u_0)\mathfrak{J}^A|\mathcal{A},p\rangle.$$

Check invariance of S-matrix on two-particle states $|\mathcal{A}, p\rangle \otimes |\mathcal{B}, q\rangle$

$$\mathcal{S} \circ \Delta(\widehat{\mathfrak{J}}^A) = \Delta(\widehat{\mathfrak{J}}^A) \circ \mathcal{S}.$$

Satisfied if u related to momentum p (as previously assumed)

$$u = x^{+} + \frac{1}{x^{+}} - \frac{i}{2g} = x^{-} + \frac{1}{x^{-}} + \frac{i}{2g}, \qquad e^{ip} = \frac{x^{+}}{x^{-}}.$$

S-matrix has Yangian symmetry. YBE follows.

More or less standard, but p already parameter of Lie representation. Yangian for the one-dimensional Hubbard model.

Relation to Full Yangian

The $\mathfrak{psu}(2,2|4)$ Yangian looks different. $\begin{bmatrix} \mathsf{Dolan} \\ \mathsf{Nappi} \\ \mathsf{Witten} \end{bmatrix} \begin{bmatrix} \mathsf{Serban} \\ \mathsf{Staudacher} \end{bmatrix} \begin{bmatrix} \mathsf{NB}, \; \mathsf{Erkal} \\ \mathsf{In} \; \mathsf{progress} \end{bmatrix} \begin{bmatrix} \mathsf{Zwiebel} \\ \mathsf{hep-th/0610283} \end{bmatrix}$ Let $\mathfrak{J} \in \mathfrak{psu}(2|2)^2$ and $\mathfrak{A}^{\pm} \perp \mathfrak{psu}(2|2)^2$. Then $\mathfrak{psu}(2,2|4)$ coproduct

$$\Delta \widehat{\mathfrak{J}} \simeq \widehat{\mathfrak{J}} \otimes 1 + 1 \otimes \widehat{\mathfrak{J}} + \mathfrak{J} \otimes \mathfrak{J} + \mathfrak{A}^{\pm} \otimes \mathfrak{A}^{\mp}.$$

How does the $\mathfrak{psu}(2|2)^2$ Yangian relate to the $\mathfrak{psu}(2,2|4)$ Yangian? Action of full Yangian (bi-local only) on excitation states:

Action of $\mathfrak{A}^+ \otimes \mathfrak{A}^-$ should lead to non-trivial $\widehat{\mathfrak{J}} \sim u \mathfrak{J}$ on single excitations. Constraints for the construction of the full Yangian?

Quantum Deformations

Quantum Deformations $\mathsf{U}_q(\mathfrak{psu}(2|2)\ltimes\mathbb{R}^3)$

Quantum deformations of $\mathfrak{psu}(2|2) \ltimes \mathbb{R}^3$

NB, Koroteev Spill in preparation

- are presumably completely irrelevant for AdS/CFT,
- are nevertheless interesting mathematical and technical subject,
- may lead to a quantum deformation of the Hubbard model.

Use Chevalley basis: $\mathfrak{E}_k, \mathfrak{H}_k, \mathfrak{F}_k, k = 1, 2, 3$ (rank 3)

raising:
$$\mathfrak{E}_1 \sim \mathfrak{R}^2_1$$
, $\mathfrak{E}_2 \sim \mathfrak{Q}^2_2$, $\mathfrak{E}_3 \sim \mathfrak{L}^1_2$, Cartan: $\mathfrak{H}_1 \sim 2\mathfrak{R}^2_2$, $\mathfrak{H}_2 \sim -\mathfrak{C} - \mathfrak{R}^2_2 - \mathfrak{L}^2_2$, $\mathfrak{H}_3 \sim 2\mathfrak{L}^2_2$, lowering: $\mathfrak{F}_1 \sim \mathfrak{R}^1_2$, $\mathfrak{F}_2 \sim -\mathfrak{S}^2_2$, $\mathfrak{F}_3 \sim \mathfrak{L}^2_1$.

 $\mathfrak{E}_k, \mathfrak{H}_k, \mathfrak{F}_k$ associated to node k of Dynkin diagram: 0

Quantum Deformed Algebra

Charges and commutators. $(A_{jk}$: symmetric Cartan matrix)

$$[\mathfrak{H}_j,\mathfrak{E}_k] = A_{jk}\mathfrak{E}_k, \quad [\mathfrak{E}_j,\mathfrak{F}_k] = \pm \delta_{jk} \frac{q^{\mathfrak{H}_j} - q^{-\mathfrak{H}_j}}{q - q^{-1}}, \quad \text{etc.}.$$

Serre relations (relax two of them to obtain central extension)

$$\mathfrak{E}_1\mathfrak{E}_1\mathfrak{E}_2 - (q+q^{-1})\mathfrak{E}_1\mathfrak{E}_2\mathfrak{E}_1 + \mathfrak{E}_2\mathfrak{E}_1\mathfrak{E}_1 = 0$$
, etc..

Quantum deformed coproduct

$$\Delta(\mathfrak{H}_k) = \mathfrak{H}_k \otimes 1 + 1 \otimes \mathfrak{H}_k, \quad \Delta(\mathfrak{E}_k) = \mathfrak{E}_k \otimes 1 + q^{-\mathfrak{H}_k} \otimes \mathfrak{E}_k, \quad \text{etc.}$$

Braiding of $\mathfrak{E}_2,\mathfrak{F}_2$ as before; leads to cocommutativity of center.

$$\Delta(\mathfrak{E}_2) = \mathfrak{E}_2 \otimes 1 + q^{-\mathfrak{H}_k} \mathfrak{U}^{+1} \otimes \mathfrak{E}_2, \quad \text{etc..}$$

Fundamental Representation

Can construct a (2|2)-dimensional representation as before.

Find constraint (quantum deformed)

$$\left(\frac{q^C - q^{-C}}{q - q^{-1}}\right)^2 - PK = \left(\frac{q^{1/2} - q^{-1/2}}{q - q^{-1}}\right)^2.$$

Introduce x^{\pm} parameters with genus-one constraint

$$x^{+} + \frac{1}{x^{+}} - x^{-} - \frac{1}{x^{-}} + ig(q - q^{-1})\left(\frac{qx^{+}}{x^{-}} - \frac{x^{-}}{qx^{+}}\right) = \frac{i}{g}, \quad e^{ip} = \frac{qx^{+}}{x^{-}}.$$

S-matrix can be constructed. Scattering factor for alike bosons:

$$A_{12} = S_{12}^{0} \frac{q^{+1}x_{2}^{+} - q^{-1}x_{1}^{-}}{q^{-1}x_{2}^{-} - q^{+1}x_{1}^{+}}.$$

Enhanced Symmetry in the $\mathfrak{psu}(1,1|2)$ Sector

Bethe Equations

 $\mathfrak{psu}(1,1|2)$ sector comprises fields $\{\mathcal{D}^n\phi_{1,2},\mathcal{D}^n\psi,\mathcal{D}^n\dot{\psi}\}$. Bethe equations

$$1 = \prod_{j=1}^{K} \frac{x_{j}^{+}}{x_{j}^{-}}, \qquad 1 = \prod_{j=1}^{K} \frac{y_{k} - x_{j}^{+}}{y_{k} - x_{j}^{-}}, \qquad 1 = \prod_{j=1}^{K} \frac{\dot{y}_{k} - x_{j}^{+}}{\dot{y}_{k} - x_{j}^{-}},$$

$$1 = \left(\frac{x_{k}^{-}}{x_{k}^{+}}\right)^{L} \prod_{\substack{j=1\\j \neq k}}^{K} \left(\sigma_{12}^{2} \frac{u_{k} - u_{j} + ig^{-1}}{u_{k} - u_{j} - ig^{-1}}\right) \prod_{j=1}^{N} \frac{x_{k}^{-} - y_{j}}{x_{k}^{+} - y_{j}} \prod_{j=1}^{N} \frac{x_{k}^{-} - \dot{y}_{j}}{x_{k}^{+} - \dot{y}_{j}}.$$

Symmetries: (modify set of Bethe roots; keep energy & charges)

- Add Bethe roots $x^{\pm}, y, \dot{y} = \infty$: $\mathfrak{psu}(1, 1|2)$ manifest symmetry
- Add roots $y, \dot{y} = 0$, reduce length $L \mapsto L 1$: $\mathfrak{psu}(1|1)^2$ hidden sym.
- Change flavour between y and \dot{y} : 2^M degeneracy?! [NB, Staudacher] What is the symmetry origin of this degeneracy?

Symmetry Generators

How are the symmetries realised as spin chain operators?

• $\mathfrak{psu}(1,1|2)$ preserves length. Expansion in even powers of g

$$\mathfrak{J}(g) = 0 + g^2 + g^4 + \dots$$

Action known at $\mathcal{O}(g^4)$.

Zwiebel hep-th/0511109

ullet $\mathfrak{psu}(1|1)^2$ changes length by one unit. Expansion in odd powers of g

$$\mathfrak{Q}(g) = g^{1} + g^{3} + \dots \qquad \mathfrak{S}(g) = g^{1} + g^{3} + \dots$$

Action known at $\mathcal{O}(g^3)$.

Zwiebel hep-th/0511109

• What about the 2^M degeneracy?

$\mathfrak{su}(2)$ Automorphism

The algebra $\mathfrak{psu}(1,1|2)$ has a $\mathfrak{su}(2)$ outer automorphism.

- Supercharges form $\mathfrak{su}(2)$ doublet $\mathfrak{Q}^{a\beta\mathfrak{c}}=(\varepsilon^{ad}\mathfrak{Q}^{\beta}{}_{c},\varepsilon^{\beta\delta}\mathfrak{S}^{a}{}_{\delta}).$
- Fermions form doublet $\mathcal{D}^n \psi^{\mathfrak{a}} = (\mathcal{D}^n \psi, \mathcal{D}^n \dot{\psi})$.
- Bethe equations: Changes numbers N, N of auxiliary roots by ± 1 .

Automorphism can be defined consistently for field representation [NB, Zwiebel]

$$\mathfrak{B}^{\mathfrak{a}}_{\mathfrak{b}}|\mathcal{D}^{n}\phi^{c}\rangle = 0, \qquad \mathfrak{B}^{\mathfrak{a}}_{\mathfrak{b}}|\mathcal{D}^{n}\psi^{\mathfrak{c}}\rangle = \delta^{\mathfrak{c}}_{\mathfrak{b}}|\mathcal{D}^{n}\psi^{\mathfrak{a}}\rangle - \frac{1}{2}\delta^{\mathfrak{a}}_{\mathfrak{b}}|\mathcal{D}^{n}\psi^{\mathfrak{c}}\rangle.$$

- Automorphism explains some degeneracy: States organised into $\mathfrak{su}(2)$ multiplets of $\mathfrak{psu}(1,1|2)$ multiplets.
- Automorphism does not explain all degeneracy, e.g.: $2^{\otimes 3} = 4 \oplus 2 \oplus 2$.
- $\mathfrak{su}(2)$ multiplets composed from linear combinations of Bethe states.

How do the additional hidden symmetry generators act?

Sample Degenerate States

Find some degenerate states to gain experience.

NB, Zwiebel to appear

Simplest state which is part of a 2^{L-2} multiplet: $|0\rangle = |\psi^{<}\psi^{<}...\psi^{<}\rangle$.

Next simplest states should have three excitations. Basis states:

$$|j,k,\ell\rangle = \epsilon_{ab}|\dots\mathcal{D}\psi^{<}\dots\phi^{a}\dots\phi^{b}\dots\rangle.$$

Find L+1 degenerate states. Simplest one unrelated by symmetries:

$$|1\rangle \simeq \sum_{j,k} (-1)^{k-j} |j,k,k+1\rangle.$$

Obtained by bi-local combination of $\mathfrak{psu}(1|1)^2$ generators

$$|1\rangle = \sum_{j,k} \mathfrak{S}^{>}(j) \mathfrak{Q}^{>}(k) |0\rangle.$$

Caveat: Works unless state physical (zero momentum). Then: $\mathfrak{psu}(1|1)^2$.

Yangian Automorphism

Symmetry generated by

$$\widehat{\mathfrak{B}}^{\mathfrak{ab}} = \sum_{jk} \mathfrak{S}^{\mathfrak{a}}(j) \mathfrak{Q}^{\mathfrak{b}}(k)$$

- Commutes exactly with Hamiltonian!
- Generates the other degenerate states.
- Generates half of undeformed loop algebra of $\mathfrak{su}(2)$ automorphism (?) What kind of generator is $\widehat{\mathfrak{B}}^{\mathfrak{ab}}$?

Part of $\mathfrak{psu}(1|1)^2$ Yangian algebra with automorphism? Standard coproduct of $\widehat{\mathfrak{B}}^{\mathfrak{ab}}$ for this algebra

$$\Delta\widehat{\mathfrak{B}}^{\mathfrak{ab}} = \widehat{\mathfrak{B}}^{\mathfrak{ab}} \otimes 1 + 1 \otimes \widehat{\mathfrak{B}}^{\mathfrak{ab}} + \mathfrak{Q}^{\mathfrak{a}} \otimes \mathfrak{S}^{\mathfrak{b}} + \mathfrak{S}^{\mathfrak{a}} \otimes \mathfrak{Q}^{\mathfrak{b}}.$$

Bi-local part similar to above definition: Part of Yangian! Strange: $\widehat{\mathfrak{B}}^{\mathfrak{ab}}$ non-trivial for $e^{iP} \neq 1$, but $\mathfrak{psu}(1|1)^2$ only when $e^{iP} = 1$.

Conclusions

Conclusions

- \star Extended $\mathfrak{psl}(2|2)$ Algebra
- Extensions of $\mathfrak{psl}(2|2)$ are interesting algebras.
- Applications to AdS/CFT and one-dimensional Hubbard model.
- ullet Quantum deformation $U_q(\mathfrak{psl}(2|2))$ possible.
- * Loop Algebras and Deformations
- Integrable models governed by infinite-dimensional Hopf algebras.
- S-matrix has Yangian symmetry.
- Degeneracy in $\mathfrak{psu}(1,1|2)$ sector explained by Yangian.

* Outlook

Apply symmetries to understand the AdS/CFT integrable system.