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Introduction

Planar N/ = 4 SYM & strings on AdSs x S5 are presumably integrable.
Integrable models are undoubtedly very nice physical models.

Moreover: Integrability is a hidden symmetry.
Understand symmetry algebra to understand the model.

This talk: Loosely connected aspects of symmetries, mostly psl((2|2).
Outline:

e Lie Symmetries

e Affine Algebras and Deformations

e Yangian

e Quantum Deformations

e Degeneracies in the psu(1,1|2) Sector.
e Conclusions
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Symmetry
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AdS/CFT Particle Model(s)
String Theory: Light cone gauge using AdSs-time and S°-great circle.

Berenstein

e Vacuum: Point-particle moving along time and great circle. [sdacena]
e Excitations: 4 coordinates on AdSs and 4 coordinates on S°.
e Fermions: 32 coordinates, 1/2 momenta, 1/2 gauged away, 8 remain.

Staudacher

Gauge Theory: Spin chain states with few “excitations”. [henietstas

e Vacuum: Half-BPS state |0) =|... ZZZ...) (ferromagnetic vacuum).
e One-excitation states with excitation A of momentum p

a

, |
A, p) = Za e Z A2, OH|A p) = 6EA(p)|A,p).

(4 + 4|4 + 4) flavours of excitations A € {¢;, D, Z|a, Vst [5N|dtt]
e Other spin orientations Vg are multiple coincident excitations.

QM particle model of 8 bosonic and 8 fermionic flavours on the circle.
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Residual Symmetry psu(2|2)
Excitations transform as (2|2) x (2|2) of psu(2|2) x psu(2]2).
Consider just (2|2) flavours and one copy of psu(2|2). Generators:

e R%: su(2) subalgebra of S°/internal symmetry.
o £%: su(2) subalgebra of AdS5/conformal symmetry.

e 0%: 4 (Poincaré) supercharges.

e G%3: 4 (conformal) supercharges.

psu(2|2) has three-dimensional (exceptional!) central extension.

Need this central extension § := psu(2[2) x R? for consistency: [ tioe]

e ¢: Hamiltonian/dilatation generator (up to integer shift).
e ‘3. world sheet shift in o /(classical) gauge variation.
e R: world sheet shift in o/(quantum) gauge variation.
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Lie Algebra psu(2|2) x R3
Lie superalgebra defined by Lie brackets

o R%,, £%3: canonical brackets of su(2) x su(2) generators.
o ¢ ‘I3 RK: central charges.

o 1%, G%3: supercharges

(0%, 6% = 658% + GORY, + 5E6%C,
{Q%,Q74} = e“epd’B,
{Gag, 665} = €ac€55ﬁ.
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Fundamental Representation

Have (2|2) flavours of particles {|¢%), |10%)}. Represent algebra! [.....\o1100
Most general action compatible with su(2) x su(2)

Q%|¢°) = a dflv), &°51¢°) = ceps| Z7°)
Q[Y7) = be e 246, &ly7) = da3le°).

Markers Z* represent (dynamic) insertion /deletion of vacuum field Z

e derived from action of supercharges in gauge theory,
e B, & are gauge transformations iff P, K ~ (1 — e*P).

Imposing consistency of superalgebra
e fixes central charges C = %(ad + bc), P = ab, K = cd,

e yields constraint ad — bc =1 or C? — PK =
e provides dispersion relation C? = i + 4¢° sin”

D).

A~ =
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Coproduct

Coproduct A defines how some generator 3 acts on multi-particle states.
Coproduct A : U(h) — U(h) ® U(h) adds one site. Chain: AL7L(J).

Trivial coproduct (tensor product action): A(J4) =34 ®@1+1® J4.

Action of markers Z* equivalent to non-trivial coproduct
A =32 @1+ U @34

Gradings: [B] = +2, Q] = +1, [6] = -1, |R] = —2.
Abelian braiding generator ${ measures momentum e’?/2,
Coproduct of braiding element: A(4U) = U ® 4.

Non-trivial coproduct due to

e length of the spin chain changing or

e non-locality in x_ = [ do 2’ for string light cone gauge.
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Cocommutative Hopf Algebra

S-matrix S permutes two particles (modules) A, B
S:ARB—-B®A.
Can the S-matrix be invariant? Quasi-cocommutativity:
SoA[FH =A[FY o S.

Center: Matrix form of S irrelevant. Need 1 + U3y = Po + U
Works in general only if central elements are identified [ s |

Torrielli

B = gOéH(l — il+2), R = goz_l(l — 5.1_2).

Trade in two independent charges ‘3, 8 for one momentum charge 4.
No constraint on energy ¢ (only through shortening C? — PK = i)
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Fundamental S-Matrix
Invariance S o A(J?) = A(J?) o S fixes S-matrix up to phase.

Tensor product of two fundamentals irreducible!

(P1)4 ® (P2)a = {0,0; p1,p2}16 = (P2)4a ® (P1)4
S-matrix equivalent to Shastry’s R-matrix of 1D Hubbard model. |, s ob10017]

Consider YBE §1585138593 = §5238513512. YBE involves tensor product

(P1)a @ (p2)a ® (p3)a = {0,1;p1,p2, p3}32 D {1, 0; p1,p2, D3 }32.
Check for both components: |p1¢ld), |¢idepld). Triviall

Nevertheless, still have to do a little work to prove YBE.
Representation theory of full integrable symmetry should imply YBE.
Need larger symmetry: Yangian?!
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Particle Models & Loop Algebras

Consider a generic integrable particle model.
Particles have flavour A and momentum p.

Understand flavour A as module of Lie algebra. What is p algebraically?
Answer: Evaluation parameter for a representation of a loop algebra.

The loop algebra (infinite-dimensional) {J%} of some Lie algebra {J*}:

]n—l—m-
Evaluation representations (finite-dimensional) defined as
~A ~A
Jn A p) = p" 7 A p).

Tensor products of evaluation representations are typically irreducible!
—> S-matrix & YBE follow from representation theory.
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S-Matrices & YBE

S-matrix S permutes two particles (modules) A, B
S:ARB— B®A.

e The tensor products A ® B and B ® A are irreducible.
e Quasi-cocommutativity: A ® B and B ® A are isomorphic.

S-matrix is the unique intertwiner (up to one overall factor: phase)
SoA[Jy) =A@F0)eS.
Proof of Yang-Baxter equation:

SABSA@SB@:A®B®C—>C®B®A,
SpcSacSap : AXBRXC —- CRB®A.

Map unique (up to overall factor) = YBE (almost).
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Yangian Algebras

Loop algebra: Has trivial coproduct A("};ﬁ) = 32‘ ®R1+1® 3;?.
Intertwiner A® B — B ® A is trivial: § ~ P (permutation operator).

Yangian: deformation of half of a loop algebra (32, n > 0).
Generated by 3 = 34" and 3% = J4. Coproduct:

AN
~

AGH =3 @1+103 + o038 93

Coproduct now depends on the order of particles through 3% @ J°.
Yangian has non-trivial S-matrix. Evaluation representations:

YA p) = (ulp) +uo) IA,p),  ulp) = Lcot(Ip).

Double Yangian: deformation of full loop algebra.
Quantum-Deformed Affine Algebra: Similar, but also J* deformed.
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Yangian Y (psu(2]2) x R?)

Need to find a 3 to enhance 34 of psu(2)2) x R,
Coproduct of J4 is braided by I

A =321+ U @34

Educated guess for braided coproduct of §A

AGYH =301+ U @34 + A, 35U @ 3°.

Coproduct of central elements

AC)=CR1+10C+PU 2R R — RUT? @ P,
AP =PR1+U2oP-—cu?aP+PoC,
AR =RR1+U2RA+CU?RARA-RQC.

Center is cocommutative if 3, R, ‘3, R ~ (1 — U*2)l
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Invariance of S-Matrix

Define evaluation representation

A, p) = ig(u(p) + uo) I A, p).

Check invariance of S-matrix on two-particle states | A, p) ® |B, q)

AN

SoA@FY) =A@FY oS
Satisfied if u related to momentum p (as previously assumed)

++1 0 _+1+i ip T
U =2x ——— == , et = —.
xT  2g x 2q x

S-matrix has Yangian symmetry. YBE follows.
More or less standard, but p already parameter of Lie representation.
Yangian for the one-dimensional Hubbard model.
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Relation to Full Yangian

The psu(2,2|4) Yangian looks different. [ﬁgLapr}][Sferba” (R [ et [rep-th 0010283

audacher

Let J € psu(2]2)? and AF L psu(2]2)2. Then psu(2,2]4) coproduct
AJ~31+193+303+ AT AT,

How does the psu(2]2)? Yangian relate to the psu(2,2|4) Yangian?

Action of full Yangian (bi-local only) on excitation states:

oo [OL110] v | [[O]6]

zZ Z Z Z Z Z Z zZ Z Z Z Z Z Z

Action of A+ ®2A~ should lead to non-trivial J ~ . on single excitations.
Constraints for the construction of the full Yangian?
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Quantum Deformations U,(psu(2|2) x R?)

NB, Koroteev]

Quantum deformations of psu(2[2) x R? [ s

in preparation

e are presumably completely irrelevant for AdS/CFT,
e are nevertheless interesting mathematical and technical subject,
e may lead to a quantum deformation of the Hubbard model.

Use Chevalley basis: &, 9,5k, £ =1,2,3 (rank 3)

raising : & ~R?%, Gy ~ 02, E3 ~ £y,
Cartan: $1 ~ 2R?%, $Ho~ —C—R%y — £%, H3 ~ 282,
lowering :  F1 ~ Ry, Fo~ -6, Fs ~ £1.

1 2

3
€, N, Sk associated to node k of Dynkin diagram: Q @ Q

su(2) su(2)
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Quantum Deformed Algebra
Charges and commutators. (A;;: symmetric Cartan matrix)

5 _ q—ﬁj

, etc..
q—q !

19, €] = A€, (€, Tk = :|:5jkq

Serre relations (relax two of them to obtain central extension)
E1EEy — (q -+ q_l)QlefQQﬁ + E2¢&1¢; =0, etc..

Quantum deformed coproduct

ADr) =9 01+1® 9, A(C) =€ 014+¢ 7+ @ ¢, etc.

Braiding of &5, §2 as before; leads to cocommutativity of center.

A(sz) =C,®1+ q_ﬁkﬂ_l_l ® &y, etc..
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Fundamental Representation

Can construct a (2|2)-dimensional representation as before.

Find constraint (quantum deformed)

C _ _—C\ 2 1/2 _ —1/2 2
q q q q
<q—q1> PK( ¢g—q! )

Introduce z* parameters with genus-one constraint

1 1 , xT T 7 - xT
B P e B
X X

x qr™

S-matrix can be constructed. Scattering factor for alike bosons:

_|_ _ —
Ay, — g0 9T —a

12 _ 1
q txy, —qtlx
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Bethe Equations
psu(1, 1|2) sector comprises fields {D™¢; 5, D™, D™i)}. Bethe equations

K+ K + K +
L Yo — Ye — I
1=]]-%., 1= Loo1=]—2,
=17 j=19k — 13 =19k 7
L .
_ K N N N .
[ Tk o Uk — Uj + 1y Tp Y TT % — Y
l=|—= i B — + _ . +_
L j=1 k J g j=1 L —Yj j=1 L —Yj
J#k

Symmetries: (modify set of Bethe roots; keep energy & charges)

o Add Bethe roots x*,y,7 = oo: psu(1,1]2) manifest symmetry
e Add roots ¥,y = 0, reduce length L — L — 1: psu(1]|1)? hidden sym.
e Change flavour between y and 7: 2™ degeneracy?! [ et

What is the symmetry origin of this degeneracy?
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Symmetry Generators
How are the symmetries realised as spin chain operators?

e psu(l,1|2) preserves length. Expansion in even powers of g

~@+ @+ o+

Action known at O(g%). hep-thy 0511109

e psu(1|1)? changes length by one unit. Expansion in odd powers of ¢

m;( o=+ B -

Action known at O hep-ﬁv/igts)flllog

e What about the 2 degeneracy?
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su(2) Automorphism

The algebra psu(1,1]2) has a su(2) outer automorphism.

e Supercharges form su(2) doublet Q¢ = (£299Q7  P2&%).
e Fermions form doublet D")® = (D™, D™).
e Bethe equations: Changes numbers N, N of auxiliary roots by +1.

Automorphism can be defined consistently for field representation|"s 2iee

B D"¢%) =0,  BY| DY) = §|D"Y) — 505D ).

e Automorphism explains some degeneracy:

States organised into su(2) multiplets of psu(1, 1/2) multiplets.
e Automorphism does not explain all degeneracy, e.g.: 293 =492 P 2.
e su(2) multiplets composed from linear combinations of Bethe states.

How do the additional hidden symmetry generators act?
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Sample Degenerate States

Find some degenerate states to gain experience. N el

Simplest state which is part of a 2172 multiplet: [0) = [y <¢<...9<¢<).
Next simplest states should have three excitations. Basis states:
j k ¢

| ! T
G,k 0) = ey .. DU<. .. % .. 0.,

Find L + 1 degenerate states. Simplest one unrelated by symmetries:

1)~y k(—l)k_j\j, k,k+1).

Y

Obtained by bi-local combination of psu(1|1)? generators

Z &7 () Q7 (k) 10).
Caveat: Works unless state physical (zero momentum). Then: psu(1]1)2.
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Yangian Automorphism

Symmetry generated by
vab a/ .\ b
B =3 &()(k)

e Commutes exactly with Hamiltonian!
e Generates the other degenerate states.
e Generates half of undeformed loop algebra of su(2) automorphism (7)

What kind of generator is 2307

Part of psu(1|1)? Yangian algebra with automorphism?
Standard coproduct of B for this algebra

ABY — PP 1 1B L 06"+ 6w 0"

Bi-local part similar to above definition: Part of Yangian! Strange:
B non-trivial for e’ # 1, but psu(1[1)? only when e’ = 1.
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Conclusions

x Extended psl(2|2) Algebra

e Extensions of psl(2|2) are interesting algebras.

e Applications to AdS/CFT and one-dimensional Hubbard model.
e Quantum deformation U,(psl(2]2)) possible.

* Loop Algebras and Deformations

e Integrable models governed by infinite-dimensional Hopf algebras.
e S-matrix has Yangian symmetry.

e Degeneracy in psu(1,1|2) sector explained by Yangian.

* Outlook
e Apply symmetries to understand the AdS/CFT integrable system.
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