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I. Gluon amplitudes in perturbation theory

S-matrix elements for four-gluon scattering are defined with all

external legs on shell, p2
1,2,3,4 = 0 ⇒ IR singularities.
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Although the amplitude is not a good observable itself, it con-

tains important information about the cusp anomalous dimension

γcusp (the large spin limit of the anomalous dimension of twist-two

operators). Recent results in the planar limit allowed comparison

with predictions from integrable models (BES equation). An inter-

esting iterative structure was discovered revealing properties valid

to all orders – relevant to AdS/CFT.

The subject of this talk will be the conformal symmetry under-

lying the amplitude. We first review the perturbative calculations

of Bern et al and discuss the conformal properties of the Feynman

integrals. Then we establish the exact form of the IR finite part of

the amplitude using factorization into form-factors and imposing

conformal invariance.
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II. Loops: early results

• 1-loop: Green, Schwarz & Brink (1982); Gates, Grisaru, Rocek

& Siegel (1983)

• 2-loop: Bern, Rozowsky & Yan (1997); all-order iteration con-

jectured Anastasiou, Bern, Dixon & Kosower (2003)

• 3-loop: Bern, Dixon & Smirnov (2005) : iteration confirmed;

found γcusp which matches the maximal transcedentality prediction

of Kotikov, Lipatov, Onischenko & Velizhanin (2004) based on

QCD results by Moch, Vermaseren & Vogt (2003), and confirmed

by Staudacher (2004) using Bethe Ansatz

The unitarity method employed by Bern et al is much more ef-

ficient than a direct calculation of Feynman graphs. It consists in

constructing the amplitude from a remarkably simple set of Feyn-

man integrals and then verifying its consistency through unitarity

cuts.

Feynman integrals up to 3 loops:
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III. Conformal properties of 4-point loop integrals

Ladder integrals (scalar boxes) are known to be conformal in D = 4

(i.e., off shell) (Broadhurst (1993)).

Drummond, Henn, Smirnov & Sokatchev (2006) realized that

also the ‘tennis court’ 3-loop integral of BDS is conformal. The

best way to see this is to go to a dual ‘coordinate space’ picture

(not a Fourier transform !):

p

p

p

p
1

2 3

4

x x

x

x

3

42

1

Momentum integral off shell (p2
i 6= 0, D = 4)

∫
d4k

k2(k − p1)2(k − p1 − p2)2(k + p4)2
⇒

Change variables:

p1 = x1−x2 ≡ x12, p2 = x23, p3 = x34, p4 = x41 ,
∑

i

pi = 0

k = x15
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⇒
∫

d4x5

x2
15x

2
25x

2
35x

2
45

=
−iπ2

x2
13x

2
24

Φ(1)(u, v)

Function of the conformal invariant cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

Check conformal invariance by inversion

x → x

x2

Need 4 scalar propagators at each 4-dimensional integration vertex

to cancel the conformal weight of the measure.

Further examples: 3-loop integrals:

The ‘tennis court’ requires a numerator factor x2 to balance the

excess of propagators at one vertex.

The same pattern continues at higher loops.
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Bern, Czakon, Dixon, Kosower & Smirnov (2006) used this ob-

servation to list all relevant 4-loop integrals. They found 10 inte-

grals, but unitarity shows that 2 of them do not contribute. Why?

We can give a simple conformal explanation: the non-contributing

integrals diverge even off shell. Example:

(d  x)

(x  )

4 4

2 8
~

Off−shell finite
Conformal
Contributes

Not conformal
Off−shell divergent

Does not contribute

Exactly the same happens at 5 loops (Bern, Carrasco, Johans-

son & Kosower (2007)). They find 34 contributing and 25 non-

contributing integrals. We have checked that the latter diverge.

Another remarkable feature is that the contributing integrals

always come with coefficients ±1 (still to be understood?):

A =
∑

± All planar conformal integrals

Strong evidence for an underlying conformal structure – does

not trivially follow from the fact that the theory is conformal !
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IV. Factorization and exponentiation. Finite part and

conformal invariance

IR singularities of on-shell amplitudes are determined by Sudakov’s

form-factor, i.e. the IR singular part of the amplitude factorizes

into 3-point factors. Simple example:

q

q+p

q+p+p

q−p1

21

4

s = (p + p )
1 2

2

~ 1
s

Generalization to higher loops:

gg 1
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IR singularities are due to exchanges of soft gluons between

neighboring hard lines. Trivial color structure in the planar limit.

Exponentiation of form-factors – two typical regimes:

• on-shell: p2
1 = p2

2 = 0, need an IR regulator, e.g. dimensional

D = 4− 2ε, ε < 0 and mass scale µ

• off-shell: p2
1 = p2

2 = m2, m2 << s = (p1 + p2)
2 (Mandelstam

variable); m2 is the IR cutoff, D = 4
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On-shell exponentiation

The on-shell form-factor satisfies an evolution equation (Collins

(1980), Mueller (1989), Sen (1989, Korchemsky (1989), Magnea &

Sterman (1990)) whose solution is very simple in a finite theory

(β = 0, no running of the coupling)

ln Λgg→1 = −1

4

∞∑

l=1

αl

(
µ2

s

)lε
[
γ

(l)
cusp

(lε)2
+

G(l)

lε

]
+ finite

where α = g2N
8π2 is the ‘t Hooft coupling.

Combining two form-factors in the s = (p1 + p2)
2 and t =

(p2 + p3)
2 channels, the 4-gluon amplitude factorizes into

M4 = (finite) × Λgg→1(s) × Λgg→1(t)

Compare this to the amplitude of Bern, Dixon & Smirnov:

ln MBDS
4 = Pole part

(
µ2

s

)
+ Pole part

(
µ2

t

)

+
γcusp(α)

8
ln2 s

t
+ const(α) + O(ε)

The special form of the finite part is the main observation of

BDS.

Recently Alday & Maldacena were able, using string theory con-

siderations, to reproduce the same factorized form of the amplitude

at strong coupling. For them ln M4 is proportional to the area of

the worldsheet of a classical string propagating in AdS space. They

use precisely our change of variables pi = xi,i+1 (called T-duality)

and look for a minimal surface ending on the curve of light-like

segments xi,i+1 (Wilson loop?).
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Off-shell exponentiation and conformal invariance

Using an off-shell cutoff p2
1,2,3,4 = m2 allows us to stay in D = 4

and reveal the conformal structure. The form-factor exponentiates

as follows (if β = 0) (Korchemsky (1989))

ln Λgg→1 = −γcusp(α)

4
ln2

(
m2

s

)
+ C(α) ln

(
m2

s

)
+ finite

Factorization of the 4-point amplitude:

ln M off−shell
4 = ln Λgg→1

(
m2

s

)
+ ln Λgg→1

(
m2

t

)
+ finite

= −γcusp(α)

8

[
ln2

(
m4

st

)
+ ln2 s

t

]

+ C(α) ln

(
m4

st

)
+ Finite part (m2, s, t)

Recall the conformal cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

Now we have p2
i = x2

i,i+1 = m2, x2
13x

2
24 = st, hence

u = v =
m4

st

However, s
t is not a conformal invariant ! M off−shell

4 becomes

conformal if ln2 s
t is compensated by the finite part:

Finite part =
γcusp(α)

8
ln2 s

t
+ const(α) + O

(
m4

st

)

exactly as in MBDS
4 and at strong coupling!
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V. Conclusion

Main points:

• The four-gluon amplitude in N = 4 SYM has the form

A =
∑

± All planar conformal integrals

The integrals must be well defined off shell. Need to explain the

coefficients ±1.

• Basic properties of IR divergences in field theory together with

the assumption of off-shell conformal invariance determine the form

of the IR finite part of the amplitude. The argument holds both

in perturbation theory and at strong coupling, in agreement with

the observations of Bern et al and Alday & Maldacena.

We have seen overwhelming evidence for conformal invariance

in the 4-gluon amplitude in N = 4 SYM. More effort is needed to

understand its origin and exploit its consequence (work in progress

in collaboration with Brandhuber, Drummond, Henn, Heslop, Ko-

rchemsky, Travaglini).
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