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0 Introduction

N =4 SYM

e The AdS/CFT duality relates N' = 4 SYM to IIB string
theory on AdSyxSs. It is a weak/strong-coupling duality.

e The large N limit of the SYM theory can be described by spin
chains.

Derivative operators

e Built from scalar fields X and covariant derivatives.

e The derivatives act as magnons moving on the chain of scalars.

Large spin all-loops anomalous dimension

e We start from an all-loops conjecture for the Bethe ansatz.
A large spin continuum limit yields an integral equation
for the density of Bethe roots.

e The energy grows logarithmically with the spin. It is given by sums
of zeta values respecting a principle of maximal transcenden-
tality.

e We discuss dressing phases (integrable modifications of the
Bethe ansatz) that do not violate transcendentality.

e A kernel from string theory reverses the sign of certain con-
tributions to the energy. At four loops, agreement with field
theory is obtained.

e The integral equation is split into two coupled equations
with simple kernels.

e The leading root distribution at strong coupling is obtained by
analytic means. The corresponding energy matches the prediction

by GKP.



1 Spin Chain Picture in Gauge Theory

Derivative sector:
{81, 59,853, .. } = TT((D?X)(D?X)(D?’X) .. )
e X is a complex scalar field of the N = 4 SYM theory with SU(N)
gauge group. D, = 0, + tgvm A,.

e The operators carry traceless symmetric Lorentz representation of
spin § = S1 + So + s34+ ... ; project 2 = x1 + 129.

e Loop diagrams define a Hamiltonian that can transfer derivatives
from one site to another. Free lines do not (as long as we look at
a certain tensor component).

e In the large NV limit this defines a nearest neighbour interaction.

Two-site Hamiltonian.

We may view the derivatives as “magnons” moving on the sites of a
spin chain.

At one loop (B):

H ({1, 52} — {1, 52}) = h(s1) + h(s)

HO sy, 5} — {s1—d, ss+d}) = 1




2 Bethe Equations

e The one-loop Hamiltonian above defines the Heisenberg XXX chain

. ol _l
with spin —3.

The dynamics of the system is captured by the Bethe ansatz

\ L
U+ 5 Up — Uj — 1 _

. = -, 3, ked{l,...,s},
(uk—1> H(Uk—Uj—i—Z) J { }

J7k

All-loops conjecture (S,BS):

1
4+ -t 2 —
U 5 :13—|—2xi, g

The deformed system is




3 One-Loop Large Spin Limit

e The L = 2 case is exactly solvable for any (even) spin; the u; are
the zeroes of certain Hahn polynomials.

e The roots are real and symmetrically distributed around zero. The
density peaks at the origin, there is no gap.

e The outermost roots grow as max{|ui|} — s/2.
e The mode numbers are F1 for negative/positive roots.

e For L > 2 there is more than one state. However, for the lowest
state the root distribution is again real and symmetric with n =

sign(u).

We take the logarithm of the Bethe equations

up + % Up — Uj — 1
—i L log U :2wnk—i§ logk I
1
Up — 3 P Up — Uj + 2

rescale u — s, expand in 1/s; and take a continuum limit:

1/2 — (=
0=2me(a) —2 ][ g 2o

1/2 U—ﬂ/

One may solve by an inverse Hilbert transform:

1 14+vV1—4u2 2
oo(1) = — lo :—arctanh( 1—4ﬂ2>
I T V

The one-loop energy is:



4 Asymptotic All-Loops Large Spin Limit

In the following we assume even spin s and label the roots by

3 s—1
— ..., * .
2’ ’ 2 }

1
jak € {j:§7:|:

We begin by rewriting the asymptotic all-loop Bethe equations:

Uk+% g 14 g%/2(z;, ) L_
<uk—g> (rr o) =

2

B Huk—uj—i (1—92/237;3{7)
N w41 — a2/9p T
oy e g 1 —g?/2x x;

Alternatively:

1 2 oo 2
2L arctan(2uy) + i L log ( g /2 ) ) = 2mny —

1+ g2/2(z;)?

1 —g?/2x 27
—9 Z arctan (u, — ;) + 20 Z log (1 — 92;2;561>
k=

j#k Wl

For each L the lowest state has mode numbers
L—2
2

As s — oo we introduce a smooth continuum variable x = % The
_dx ,

= g

ne =k +

(k).

excitation density is p(u)



We divide the logarithmic Bethe equation by s, replace the sums by
integrals, and differentiate w.r.t. u. We do not rescale u by 1/s.

L 1 ild (1462 () _
Tt lg(ugz/z(m»?)

su?+; s du
= 2mp(u) + 2—7T(L —2)6(u) — 2 /b du/’ plv)

1
s o (u—w)?+1

: b ;oon d 1 — 92/2x+(u)x_(ul)
+ 21 /bdu p(u )@lOg (1 — g2/2:c(U)95+(U'))

e The L dependent terms drop in the large spin limit.

Split
plu) = ofar) — ¢ 2 o (u)
Final integral equation:
0 = 270(&) /
o(u
2 /oo du/(u — z(u); +1

_ Gﬁ) [az+1(u)d+ xl&ul)] g9’/ 23:+(U)96(U’))

2i ()~
- z/_oodu J(u)du o8 1 —¢?/2x= (uw)zt(u)

e This is an asymptotic result, because L needs to grow with the
order in ¢ to avoid “wrapping”.

e The final formula is L independent. "Wrapping” is thus absent.



5 Weak Coupling and Transcendentality
We introduce the Fourier transform &(t) of the fluctuation density

/ due ™ o(u).

(0. 9]

The integral equation becomes

o(u)

Do+

o(t)=e"

el —1 29t

5(t) = [
—492/ dt K(2gt.2gt) 6(t)]
0

with the non-singular kernel

Ky — SO0 0 1(0)
The energy is
_ E(g) B L Ji(2g1)
o) = o = 8¢ 64g4/0 dto(t) 2520

The integral equation is of Fredholm II type. One may solve by iter-

ation:
1t 1 t
7(t) = — — ¢ (= 2
oW =371 g(4et—1+c<)et—1>+ ’
where we have used
1 o dt t"
1) = — :
Cnt1) n!/o et — 1



We find
flg) = 8g* =16¢(2)g" + (42 + 12¢(4)) 8¢°
_ (4 C(2)® + 24 C(2)C(4) — 4¢(3)% + 50 C(6)> 166 + ...

or, alternatively:

8 88 73
f(g) =8¢* — §7r294 + £W4g6 — (@7‘(’6 — 4g(3)2) 16¢° + . ..

e Agrees with KLOV up to three loops (in the large spin limit their
harmonic sums become zeta functions).

The result obeys a principle of uniform transcendentality:

The [-loop contributions have degree of transcendentality 21 - 2.




6 Dressing Kernels

The higher-loop Bethe equations may receive corrections:
N\ L S - ot 1 2t
) r, —x; 1—g°/x)x; _
—E) = - —— exp(2i0(u, u;)),
(xk> jl_[lx;—xj 1 —g*/w xf ( )
j#k
Dressing phase (AFS,BK):

Q(Uk, Uj) = Z ﬁr,r+1+2y(9) (Qr(uk)QT+1+2u<uj)_QT(uj)QT+1+2V(uk))

At weak coupling:

6 2r—|—2u—|—2,u ﬁ (r+v+p)
7’,7”+1+2V rr+1+42v

In the integral equation we have to use
K(t,t) = Kn(t, t") + Kq(t,t)

with the dressing kernel

. 1 (2p+v+
Kq(t,t') = oy E g t(=1)" (BQp,prZrliQu J2p20(t) J2p-1 (1)
P21 020w

2p+14v+
+ 5§pi1,2,0+2512 J2p(t)J2p+1+2v(t/>) .

e KLOV: There is no three-loop correction in weakly coupled field
theory. We must choose

B = 0.

Y



7 Dressing Respecting Transcendentality

Four-loop term of the scaling function when dressing is included:

73

f@y:”ﬁ-m(&ﬁﬁtdm@f+2@§qa>f+.”.

e Transcendentality is preserved, if ﬁég is a rational number times

¢(3) (or 7).

Generally:

@ggg) should have degree of transcendentaliy 2¢ +2 — r — s.

Can we eliminate all odd zetas from the scaling function?

Impose:
: ¢ : :
e Fach coefficient @gé) contains exactly one zeta function.
e A constraint from Feynman graphs:
14
=0, t<r+s—2

The coefficients are uniquely determined:

4
4 — —20¢(5),
) — +210¢(T), Ay — +12¢(5), B) — —4((5
52,3 — +210¢(7), 53,4 — +12¢(5), 52,5 - ¢(5),
BY) — —2352¢(9), By} — —210¢(T), B5s — +84((7).
The scaling function simplifies to
8 88 73 887
Q222,422 46162 6.8 39 8 10
S VAR
64— 1012 4 o TTOTOY L1214
572200~ Y T 3qosa0000 " 9 T



8 An “Analytic Continuation”

For perturbative String theory write the dressing phase as

0 (ug, u,) Z Z crs(g k) @s(uj) — qs(ug) er(“]’)) :

r=2 s=r+1
The charges ¢.(u) are normalized as ¢.(u) = ¢ 'q,(u) so that

Cr s (g) = gz_r_sﬁr,s (g> .

The strong-coupling expansion of ¢, ¢ within string theory is

o0
cralg) =) clgh
n=0

Proposal for the all-order strong-coupling expansion:
L= (=1)"™"*)¢(n)
w _ | —1(s—1
CT,S 2(—271')” F(n _ 1) (/r )(S ) *
) Fi(s+r+n—=3)i(s—r+n—1)
Fi(s+r—n+1)|li(s—r—n+3)]’

Singular for n = 0, 1, when

A0 — (1) _ (1 — (_1)T+8) (r=1(s—1)

— Yr+l,s Cr — .

’ T (s+r—2)(s—r)

(The latter are the AFS and BT HL terms, respectively.)

DD

Based on:

e n =0, 1: available data
e for even n: crossing symmetry (J,BHL)

e for odd n: natural choice

Can we interpolate to weak coupling in order to recompute f(g)
with this dressing kernel?




Analogy to the digamma function:
U(z) = 0.log I'(2) has the asymptotic expansion (z >> 0)
00 ¢,
U(l+2z)=1 - — n=——=(—1)"C(1 —n),
o) =loget I E (—1)°¢(1 —n)
while the expansion around z = 0 reads
V(l+2)=—p+ Yy &f,  a=—(-DF1+k).
k=1

The expansion coefficients for large and small 2z are almost the same!

Cn — _C_n

¢rs(g) has the weak coupling expansion

o0
cralg) = =) gt
n=1

We use the identities

((1—z) =2(2m)"" COS(§7TZ) [(z)¢(z) and T(l-z)= sin(mz) ['(2)
to obtain
(o (= (0 cosgmn) (<) (1= m)
" TG -n—r— S TEB—n+7—s)

'2—n)I'l —n)(r—1)(s—1)

"TEG—n—r+ ) TE0—n+r+s)

e Only even n contribute.
e The constraint from Feynman graphs is satisfied.
e The degree of transcendentality is correct.

e Strong argument in BES, v2 contains a proot for ¢ 3.
General proof in KL ht/0611204.



8 String Phase and Scaling Function

The weak coupling expansion of the string theory dressing phase yields
the kernel

B) = +240¢(7), BY) = +24¢(5), B
Gyy = —4T04C(9), BY) = —420((T), Bys = +168c<7>-

e These are exactly twice the values we obtained above by requiring
the absence of odd zeta functions!

The scaling function becomes

8 88 73
2 46 8
g) =8g* — ~ gt + — — 16| —m" +4
filg) =38 3 45" 6(630 CU)

4

+ 32 (fﬁ% s+ 5 m2C(3)* +40((3) §(5)) g%

136883 8
— 64 04 —
(3742200 AT

T + 5 T )
+210¢(3) ¢(7) + 102 §(5)2> gei .

fi(g) is obtained from f(g) (trivial dressing phase) by multiplying all
odd zeta functions by the imaginary unit %.




9 Agreement with Field Theory

In parallel to our effort, BCDKS have completed a direct computation
of the scaling function f(g) at four loops. Their calculation uses uni-
tarity methods and conformal invariance to predict a set of integrals
which are evaluated with the help of the MB representation. The
exponentiation of infrared singularities is a stringent check.

BCDKS find

flg) =...—64x(29.335+£0.052) ¢° +...
=...— (3.0192 £ 0.0054) x 107 A" + ... .

Recall our value:

filg)=...—16 (62—30w6+4g(3)2> @+ ..

. —3.01502 x 1070\t ...

Q

The four-loop value calculated by Bern, Czakon, Dixon, Kosower and
Smirnov matches the fourth term in f,(g).

e BCDKS independently guessed the sign-flipped scaling function
fi(g). They checked compatibility with the KLV approximation
to rather high order.

e CSV ht/0612309 have improved the error bar of the BCDKS
result by three orders of magnitude.

e BMcLR constructed the four-loop dilatation operator of the su(2)
sector from Feynman graphs. They confirm

BY) = 4¢(3).



10 Magic Kernels

We decompose the “main scattering” kernel into two parts
Ku(t, ') = Ko(t, t') + K (t, 1)

even and odd, respectively, under t — —t, t’ — —t":

_ th(t)Jo(t') —t' Jo(t) J1(t)

Ko(t,t) o |
/ N ,
F 1) = PO D) — th(U)AE)
t2 . t/Q

The component K; causes the odd zeta contributions to f(g):

t A o° A
d0lt) = [ Kol2g1,0) — 4¢° /0 at Kof2g1.291") (0]

et —

leads to fo(g).

e Replace K, by K, — K;. Note Kl(t, 0) = 0.

e Substitute ¢ into the convolution on K 1.

t . .
o0(t) = ——= | Ku(29t,0) + Ke(291,0)

4 / dt’ (Km(zgt, 29t) + K(2gt, 2gt’)) (}O(t’)]
0
with the function kc

Ko(t,t") =44 / dt" Ky(t,2 gt")
0

1/

IA(()(Q g t”, t/)

/!
el — 1

e K. has the form of a dressing kernel.

. : l : .
e At weak coupling the coeflicients ﬁ,( 2 can easily be derived in closed
form. The kernel satisfies the constraint from Feynman graphs.



Flipping odd zeta contributions:

Any Fredholm II equation

o(t) = P(t) — 4¢* / dt' K(t,t)o(t)

may be solved by iteration:

(0. ¢]

7 = (A =) P

n=0

(The star denotes a convolution.)

In our case:

K =K, + K, -|-892K1>I<K0

e The resolvent is a sum of words consisting of Ky, Kj.
e The dressing kernel changes the sign of appending K after K.

e In the perturbative expansion, each beginning and each end of a
K string in a word produces an odd zeta function, because K is
odd in both arguments, while K| is even.

With or without dressing kernel, the scaling function contains terms
with 2m odd zeta functions. The relative sign of such terms is (—1)™.




11 Numerics by BBKS

The fact that

. - Jon_1(t) Jop_1(t
Ko(t,t) = ) 2(2n—1)= t1(> = t}< )
n=1

Ki(t,t) = Y 2(2n) ng(t) JQZEt/)

n=1

led BBKS to expand in terms of the eigenfunctions

P o= Jn(Qgt).
29t
Let t )
s(t) = ‘ t_l (t) = an(Q)Fn,
Zn(9) = /OOO dt Jm(ii/;)fnl(?gt) |

The integral equation becomes (dressing included)

(0. ] o0 (0, ]
Y suFyo= Fi+8) nZoniFo =2 Zumsm Fy
n=1 n=1 m,n=1
— 16 Z n(2m — 1) Zop om—1 Lom—11 51 Fon
[,m,n=1

which BBKS make into a matrix problem by taking the F;, out and
truncating the sums. The energy is

fi(g) =8¢ s1.



Plot and extrapolation taken from BBKS.

50

404 >

304 o ' 04 ' 08 1

f(g)

20 -

10 -

é 10
8
f(g), folg), f+(9).

e The matrix rank should not go much beyond the value for g. The
numerics is reliable up to g ~ 20.

e The transition to the linear regime happens around g ~ 1. Ex-
trapolation is well behaved.

Strong coupling behaviour of f, (g):
filg) = 4.000000g — 0.661907 — 0.0232¢g + ...
Error: +{1,2, 1} in the last digit displayed.

Exact result: GKP, F'T

3log(2) )

felg) = 49 — -



12 BES: Dressing is Nesting

Odd rows:
0= Som—1 — Om1 + 2(2m — 1) Zoy_1, 8¢
Even rows:
0 = Sop —8n Zop1+2(2n) Zopy Sp + 160 (2m—1) Zop om—1 Zom—1r Sy
or

0 = 59, + 2(2n) Zoy—12m—152m—-1 — 2(2n) Zop—12m Som

Multiply by £}, and sum over the free index:

A t _Jl(QQt) 2/00 > N (A A N(4!
() = _ 4 dt' Ko(2gt.2gt) (6, + 6,)(t
Oo(t) 1| 2yt g | 0(29t,2gt") (Gc + 0,)(t)
. t I, L.

o.(t) = ra— —492/ dt' Ki(2gt,2gt') (ae—ao)(t')]

— 1 0

where

. t . t

O-O(t) — Bt—l ;3271—1 FQn—la O-e(t) - €t 1 ;SQTL FQn
Rescale
u—ufe, e=1/(29), Ope — €0pe. 0 =0.%0,.
Odd:

o 0y (u)—2 /_ T _dwosli)e | /_ " R, ) (a+(u') —1) g

00 (u o u/)2 + 62 00 ™
Even:

o0 dl . / o0 _
27706(u)—2/ woolu)e +/ du' Ky (u, ) o~ (u') = 0

oo(u_u/>2+€2 o0




13 Strong Coupling Limit in the u-Picture

Backward Fourier transform of the BBKS numerical analysis:
e For g — 00, u scales with 2g. Rescale and expand in € = 1/(2g).
Further:

e The kernels K, are given in terms of the 2% (u) functions. Their
square root branch cut forces to distinguish the regimes |u| < 1.

e The FT of Fy,_ tends to zero outside the interval |u| < 1, so that

olu) =0 : |ul > 1.

o

Odd’, independent variable |u| < 1:

Odd’, |u| > 1: Not new

Even’, [u] < 1:

([ ] ) H o)

= —a + 71V1—u2o ‘(u)

o — /_OO duo—"'(u).

0

Here

Even', |u| > 1: Identically zero



Even®, |u| > 1:

1 [ 1
—a = uw/l—ﬁy[_ du'maM(u’) +
—1 00 1 u/ »
(][OO—I—]{ >du,ﬁ/1_(u’)2u—u’a (u)

e Equation on o.(u) : |u] > 1

e Put u = coth(z) and solve by Fourier transform (like KSV).

a
e Even’ fixes o.(u) : |u] < 1.
e Odd* yields oy(u) =0 : |u| > 1and o™ (u) =0 : |u] < 1.
e Solution also in AABEK, KSV ht/0703031, BdAF ht/0703131

0.7

T Ty "1/\/\/\w ¥
r'w 0.5
0.5

0.5

0.
-3 Z E] L 2 3 -3 = R z 3
-0.25 -0.25
-0.5 0.5

-0.75

1
u+1 1+
u—1 u—+1

e The solution reproduces the GKP value for the leading energy.

IS
|
| —
~_
|

mo(u) = (1 — %9(|u\ — 1)

e We found an algebraic function carrying log(s) as a coefficient.
e A gap opens:
o(u) = 1/m+0e+... = Jul<1.



14 NLO - Work in Progress (AABEK)
In the BBKS ¢-Picture the leading solution corresponds to

¢ _ (=) 2n -1 (o
Sop—1 = 2”(% - 1)' ) Son = Sop—1-

Note: These are the Taylor coefficients of (1 + 2)73/2.

e In the wu-picture, the higher orders contain non-integrable singu-
larities. An order-by-order treatment is perhaps impossible.

e The branch points u = 41 become relevant, c.f. KSV.

e In the t-picture, expanded in powers of ¢!, we meet divergent
sums as the matrix rank is taken to infinity.

Nonetheless, the t-picture NLO matrix equations are solved by

o 2m—1[b(2m — 1!l (2m — )N
> [&%n—@H_C@m—QW]’
b(2m + 1)l Q(mn—nq

st m
— (—1 e
Sm = )W4M%n—ﬂﬂ+c@m—2w

33&—1 = (‘1)

with b and ¢ left undetermined. The numerical best-fit is

1 3log(2 log(2
1 OQ)’ . 3log(2)
2 T 1

e The logarithm may be an accumulative effect of all higher orders,

c.f. KSV.

e CKht/07050890 derived the NLO energy directly from the dressed
Bethe ansatz.



15 Conclusions

e We have discussed the all-loops Bethe ansatz for the derivative
operator sector. The energy of the lowest lying state scales log-
arithmically with the total spin s as the number of derivatives
becomes large.

e We have shown how the one-loop logarithm carries over to the
higher order contributions. The coefficient of log(s) is the “scaling
function” f(g).

e The weak coupling (gauge theory) Bethe ansatz is fixed up to
four loops by current data. It contains a “dressing factor” which
becomes relevant at four loops and beyond.

e At strong-coupling (string theory) the dressing phase had been
conjectured on grounds of calculational data paired with crossing
symmetry constraints. We have presented the weak coupling ex-
pansion of this string theory dressing phase and discussed its effect
on the scaling function.

e The four-loop term of the result f,(g) agrees with field theory
calculations!

e Our result explains the string theory/field theory “discrepancies”
within the AdS;/CFT, duality. It supports the original form of the
AdS/CFT conjecture whereas the weak coupling dressing phase
breaks perturbative BMN scaling at four loops and beyond.

e We have “unnested” the dressing phase on the expense of intro-
ducing an auxiliary density, in the spirit of RSZ ht/0702151 and
SS ht/0703177.

e We have analytically derived the strong coupling limit of the root
density of the BES equation, and presented some preliminary re-
sults on the NLO correction. A systematic understanding of the
higher orders is still lacking.



16 Outlook

e The “unnesting” of the dressing phase might signal the possibility
of introducing another level into the nested Bethe ansatz (c.f. BS)
describing the spectrum of operators.

e We need to understand the strong-coupling behaviour of the scal-
ing function by analytic means. The two-loop energy can hopefully
be calculated from the AdS sigma model, c.f. RT'T ht/07043638.

e The scaling function f(g) escapes the problem of “wrapping” be-
cause of the L independence of the underlying integral equation.
This is not so for “short” operators. The calculation of the four-
loop anomalous dimension of the Konishi field would help to under-
stand wrapping effects. We plan to draw upon a method developed
for the calculation of a class of three-loop anomalous dimensions.

e The scaling function, which we obtained from the Bethe ansatz,
also occurs as a coefficient in the iteration relation for MHV am-
plitudes proposed by BDS. We should try to understand how the
recursive structure of these amplitudes is related to integrability.

e Four-point functions of BPS operators seem to show iterative pat-
terns, too. We will attempt a calculation of the three-loop four-
point function of the stress tensor multiplet in NV = 4 SYM. Hope-
fully, we will discover a guiding principle like the “rung rule” of

BCDKS.



