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0 Introduction

N = 4 SYM

• The AdS/CFT duality relates N = 4 SYM to IIB string
theory on AdS5×S5. It is a weak/strong-coupling duality.

• The large N limit of the SYM theory can be described by spin
chains.

Derivative operators

• Built from scalar fields X and covariant derivatives.

• The derivatives act as magnons moving on the chain of scalars.

Large spin all-loops anomalous dimension

• We start from an all-loops conjecture for the Bethe ansatz.
A large spin continuum limit yields an integral equation
for the density of Bethe roots.

• The energy grows logarithmically with the spin. It is given by sums
of zeta values respecting a principle of maximal transcenden-
tality.

• We discuss dressing phases (integrable modifications of the
Bethe ansatz) that do not violate transcendentality.

• A kernel from string theory reverses the sign of certain con-
tributions to the energy. At four loops, agreement with field
theory is obtained.

• The integral equation is split into two coupled equations
with simple kernels.

• The leading root distribution at strong coupling is obtained by
analytic means. The corresponding energy matches the prediction
by GKP.



1 Spin Chain Picture in Gauge Theory

Derivative sector:

{s1, s2, s3, . . .} = Tr
(
(Ds1

z X)(Ds2
z X)(Ds3

z X) . . .
)

• X is a complex scalar field of the N = 4 SYM theory with SU(N)
gauge group. Dµ = ∂µ + i gY M Aµ.

• The operators carry traceless symmetric Lorentz representation of
spin s = s1 + s2 + s3 + . . . ; project z = x1 + ix2.

• Loop diagrams define a Hamiltonian that can transfer derivatives
from one site to another. Free lines do not (as long as we look at
a certain tensor component).

• In the large N limit this defines a nearest neighbour interaction.

Two-site Hamiltonian.

We may view the derivatives as “magnons” moving on the sites of a
spin chain.

At one loop (B):

H(0) =
L∑

i=1

H(0)
i

H(0)
i ({s1, s2} → {s1, s2}) = h(s1) + h(s2) ,

H(0)
i ({s1, s2} → {s1 − d, s2 + d}) = − 1

|d|



2 Bethe Equations

• The one-loop Hamiltonian above defines the Heisenberg XXX chain
with spin −1

2.

The dynamics of the system is captured by the Bethe ansatz
(

uk + i
2

uk − i
2

)L

=
∏

j $=k

(
uk − uj − i

uk − uj + i

)
, j, k ∈ {1, . . . , s} ,

s∏

k=1

(
uk + i

2

uk − i
2

)
= 1 , E =

s∑

k=1

(
i

uk + i
2

− i

uk − i
2

)
.

All-loops conjecture (S,BS):

u± i

2
= x± +

g2

2x±
, g =

√
λ

4π

The deformed system is
(

x+
k

x−k

)L

=
∏

j $=k

x−k − x+
j

x+
k − x−j

1− g2/2x+
k x−j

1− g2/2x−k x+
j

,

s∏

k=1

(
x+

k

x−k

)
= 1 , E(g) =

s∑

k=1

(
i

x+
k

− i

x−k

)
.



3 One-Loop Large Spin Limit

• The L = 2 case is exactly solvable for any (even) spin; the uk are
the zeroes of certain Hahn polynomials.

• The roots are real and symmetrically distributed around zero. The
density peaks at the origin, there is no gap.

• The outermost roots grow as max{|uk|} → s/2.

• The mode numbers are ∓1 for negative/positive roots.

• For L > 2 there is more than one state. However, for the lowest
state the root distribution is again real and symmetric with n =
sign(u).

We take the logarithm of the Bethe equations

−i L log

(
uk + i

2

uk − i
2

)
= 2 π nk − i

∑

j $=k

log
uk − uj − i

uk − uj + i
,

rescale u → s ū, expand in 1/s, and take a continuum limit:

0 = 2 π ε(ū)− 2 −
∫ 1/2

−1/2
dū′

ρ̄0(ū′)

ū− ū′

One may solve by an inverse Hilbert transform:

ρ̄0(ū) =
1

π
log

1 +
√

1− 4 ū2

1−
√

1− 4 ū2
=

2

π
arctanh

(√
1− 4 ū2

)

The one-loop energy is:

E0 =
1

s

∫ 1
2

−1
2

dū
ρ̄0(ū)

ū2 + 1
4 s2

= 4 log(s) +O(s0)



4 Asymptotic All-Loops Large Spin Limit

In the following we assume even spin s and label the roots by

j, k ∈ {±1

2
,±3

2
, . . . ,±s− 1

2
} .

We begin by rewriting the asymptotic all-loop Bethe equations:
(

uk + i
2

uk − i
2

)L (
1 + g2/2(x−k )2

1 + g2/2(x+
k )2

)L

=

=
∏

j $=k

uk − uj − i

uk − uj + i

(
1− g2/2x+

k x−j
1− g2/2x−k x+

j

)2

Alternatively:

2L arctan(2uk) + iL log

(
1 + g2/2(x−k )2

1 + g2/2(x+
k )2

)
= 2πñk −

−2
∑

j $=k

arctan (uk − uj) + 2i
∑

j $=k

log

(
1− g2/2x+

k x−j
1− g2/2x−k x+

j

)

For each L the lowest state has mode numbers

ñk = k +
L− 2

2
ε(k) .

As s → ∞ we introduce a smooth continuum variable x = k
s . The

excitation density is ρ(u) = dx
du.



We divide the logarithmic Bethe equation by s, replace the sums by
integrals, and differentiate w.r.t. u. We do not rescale u by 1/s.

L

s

1

u2 + 1
4

+
iL

s

d

du
log

(
1 + g2/2(x−(u))2

1 + g2/2(x+(u))2

)
=

= 2πρ(u) +
2π

s
(L− 2)δ(u)− 2

∫ b

−b
du′

ρ(u′)

(u− u′)2 + 1

+ 2i

∫ b

−b
du′ρ(u′)

d

du
log

(
1− g2/2x+(u)x−(u′)

1− g2/2x−(u)x+(u′)

)

• The L dependent terms drop in the large spin limit.

Split

ρ(u) = ρ0(u)− g2 E0

s
σ(u) .

Final integral equation:

0 = 2 π σ(u)

−2

∫ ∞

−∞
du′

σ(u′)

(u− u′)2 + 1

−
(

1

2

d

du

) [
1

x+(u)
+

1

x−(u)

]

+2i

∫ ∞

−∞
du′σ(u′)

d

du
log

(
1− g2/2x+(u)x−(u′)

1− g2/2x−(u)x+(u′)

)

• This is an asymptotic result, because L needs to grow with the
order in g2 to avoid “wrapping”.

• The final formula is L independent. ”Wrapping” is thus absent.



5 Weak Coupling and Transcendentality

We introduce the Fourier transform σ̂(t) of the fluctuation density
σ(u)

σ̂(t) = e−
t
2

∫ ∞

−∞
du e−itu σ(u) .

The integral equation becomes

σ̂(t) =
t

e t − 1

[ J1(2 g t)

2 g t
−

− 4 g2

∫ ∞

0
dt′ K̂(2 g t, 2 g t′) σ̂(t′)

]
,

with the non-singular kernel

K̂(t, t′) =
J1(t) J0(t′) − J0(t) J1(t′)

t − t′
.

The energy is

f (g) =
E(g)

log(s)
= 8 g2 − 64 g4

∫ ∞

0
dt σ̂(t)

J1(2 g t)

2 g t
.

The integral equation is of Fredholm II type. One may solve by iter-
ation:

σ̂(t) =
1

2

t

et − 1
− g2

(
1

4

t3

et − 1
+ ζ(2)

t

et − 1

)
+ . . . ,

where we have used

ζ(n + 1) =
1

n!

∫ ∞

0

dt tn

et − 1
.



We find

f(g) = 8 g2 − 16 ζ(2) g4 +
(
4 ζ(2)2 + 12 ζ(4)

)
8 g6

−
(
4 ζ(2)3 + 24 ζ(2)ζ(4)− 4 ζ(3)2 + 50 ζ(6)

)
16 g8 + . . .

or, alternatively:

f(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 −

(
73

630
π6 − 4ζ(3)2

)
16g8 + . . .

• Agrees with KLOV up to three loops (in the large spin limit their
harmonic sums become zeta functions).

The result obeys a principle of uniform transcendentality:

The l-loop contributions have degree of transcendentality 2 l - 2.



6 Dressing Kernels

The higher-loop Bethe equations may receive corrections:
(

x+
k

x−k

)L

=
S∏

j=1
j $=k

x−k − x+
j

x+
k − x−j

1− g2/x+
k x−j

1− g2/x−k x+
j

exp
(
2iθ(uk, uj)

)
,

Dressing phase (AFS,BK):

θ(uk, uj) =
∑

r≥2,ν≥0

βr,r+1+2ν(g)
(
qr(uk)qr+1+2ν(uj)−qr(uj)qr+1+2ν(uk)

)

At weak coupling:

βr,r+1+2ν(g) =
∞∑

µ=ν

g2r+2ν+2µ β(r+ν+µ)
r,r+1+2ν

In the integral equation we have to use

K̂(t, t′) = K̂m(t, t′) + K̂d(t, t
′)

with the dressing kernel

K̂d(t, t
′) =

4

t t′

∑

ρ≥1,ν≥0,µ≥ν

g2µ+1(−1)ν
(
β(2ρ+ν+µ)

2ρ,2ρ+1+2ν J2ρ+2ν(t)J2ρ−1(t
′)

+ β(2ρ+1+ν+µ)
2ρ+1,2ρ+2ν+2 J2ρ(t)J2ρ+1+2ν(t

′)
)

.

• KLOV: There is no three-loop correction in weakly coupled field
theory. We must choose

β(2)
2,3 = 0 .



7 Dressing Respecting Transcendentality

Four-loop term of the scaling function when dressing is included:

f (g) = . . .− 16

(
73

630
π6 − 4 ζ(3)2 + 2 β(3)

2,3 ζ(3)

)
g8 + . . . .

• Transcendentality is preserved, if β(3)
2,3 is a rational number times

ζ(3) (or π3).

Generally:

β(,)
r,s should have degree of transcendentaliy 2, + 2− r − s.

Can we eliminate all odd zetas from the scaling function?

Impose:

• Each coefficient β(,)
r,s contains exactly one zeta function.

• A constraint from Feynman graphs:

β(,)
r,s = 0 , , < r + s− 2.

The coefficients are uniquely determined:

β(3)
2,3 → +2 ζ(3),

β(4)
2,3 → −20 ζ(5),

β(5)
2,3 → +210 ζ(7), β(5)

3,4 → +12 ζ(5), β(5)
2,5 → −4 ζ(5),

β(6)
2,3 → −2352 ζ(9), β(6)

3,4 → −210 ζ(7), β(6)
2,5 → +84 ζ(7).

The scaling function simplifies to

f0(g) = 8 g2 − 8

3
π2 g4 +

88

45
π4 g6 − 16

73

630
π6 g8 + 32

887

14175
π8g10

− 64
136883

3742200
π10g12 + 128

7680089

340540200
π12g14 ∓ . . . .



8 An “Analytic Continuation”

For perturbative string theory write the dressing phase as

θ(uk, uj) =
∞∑

r=2

∞∑

s=r+1

cr,s(g)
(
q̃r(uk) q̃s(uj)− q̃s(uk) q̃r(uj)

)
.

The charges q̃r(u) are normalized as q̃r(u) = gr−1qr(u) so that

cr,s(g) = g2−r−sβr,s(g).

The strong-coupling expansion of cr,s within string theory is

cr,s(g) =
∞∑

n=0

c(n)
r,s g1−n.

Proposal for the all-order strong-coupling expansion:

c(n)
r,s =

(
1− (−1)r+s

)
ζ(n)

2(−2π)n Γ(n− 1)
(r − 1)(s− 1) ∗

∗
Γ[12(s + r + n− 3)] Γ[12(s− r + n− 1)]

Γ[12(s + r − n + 1)] Γ[12(s− r − n + 3)]
,

Singular for n = 0, 1, when

c(0)
r,s = δr+1,s , c(1)

r,s = −
(
1− (−1)r+s

)

π

(r − 1)(s− 1)

(s + r − 2)(s− r)
.

(The latter are the AFS and BT,HL terms, respectively.)

Based on:

• n = 0, 1: available data

• for even n: crossing symmetry (J,BHL)

• for odd n: natural choice

Can we interpolate to weak coupling in order to recompute f (g)
with this dressing kernel?



Analogy to the digamma function:

Ψ (z) = ∂z log Γ (z) has the asymptotic expansion (z >> 0)

Ψ(1 + z) = log z +
∞∑

n=1

cn

zn
, cn = −Bn

n
= (−1)nζ(1− n) ,

while the expansion around z = 0 reads

Ψ(1 + z) = −γE +
∞∑

k=1

c̃k zk, c̃k = −(−1)kζ(1 + k) .

The expansion coefficients for large and small z are almost the same!

cn = −c̃−n

cr,s(g) has the weak coupling expansion

cr,s(g) = −
∞∑

n=1

c(−n)
r,s g1+n.

We use the identities

ζ(1−z) = 2(2π)−z cos(1
2πz) Γ(z) ζ(z) and Γ(1−z) =

π

sin(πz) Γ(z)
to obtain

c(n)
r,s =

(
1− (−1)r+s

)
cos(1

2πn) (−1)s−1−n ζ(1− n)

Γ[12(5− n− r − s)] Γ[12(3− n + r − s)]
∗

∗ Γ(2− n) Γ(1− n) (r − 1)(s− 1)

Γ[12(3− n− r + s)] Γ[12(1− n + r + s)]
.

• Only even n contribute.

• The constraint from Feynman graphs is satisfied.

• The degree of transcendentality is correct.

• Strong argument in BES, v2 contains a proof for c2,3.
General proof in KL ht/0611204.



8 String Phase and Scaling Function

The weak coupling expansion of the string theory dressing phase yields
the kernel

β(3)
2,3 = +4 ζ(3),

β(4)
2,3 = −40 ζ(5),

β(5)
2,3 = +240 ζ(7), β(5)

3,4 = +24 ζ(5), β(5)
2,5 = −8 ζ(5),

β(6)
2,3 = −4704 ζ(9), β(6)

3,4 = −420 ζ(7), β(6)
2,5 = +168 ζ(7).

• These are exactly twice the values we obtained above by requiring
the absence of odd zeta functions!

The scaling function becomes

f+(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(
73

630
π6 + 4 ζ(3)2

)
g8

+ 32

(
887

14175
π8 +

4

3
π2ζ(3)2 + 40 ζ(3) ζ(5)

)
g10

− 64

(
136883

3742200
π10 +

8

15
π4ζ(3)2 +

40

3
π2ζ(3) ζ(5)

+ 210 ζ(3) ζ(7) + 102 ζ(5)2
)

g12 + . . . .

f+(g) is obtained from f (g) (trivial dressing phase) by multiplying all
odd zeta functions by the imaginary unit i.



9 Agreement with Field Theory

In parallel to our effort, BCDKS have completed a direct computation
of the scaling function f(g) at four loops. Their calculation uses uni-
tarity methods and conformal invariance to predict a set of integrals
which are evaluated with the help of the MB representation. The
exponentiation of infrared singularities is a stringent check.

BCDKS find

f(g) = . . .− 64× (29.335± 0.052) g8 + . . .

= . . .−
(
3.0192± 0.0054

)
× 10−6λ4 + . . . .

Recall our value:

f+(g) = . . .− 16

(
73

630
π6 + 4 ζ(3)2

)
g8 + . . .

≈ . . .− 3.01502× 10−6λ4 + . . . .

The four-loop value calculated by Bern, Czakon, Dixon, Kosower and
Smirnov matches the fourth term in f+(g).

• BCDKS independently guessed the sign-flipped scaling function
f+(g). They checked compatibility with the KLV approximation
to rather high order.

• CSV ht/0612309 have improved the error bar of the BCDKS
result by three orders of magnitude.

• BMcLR constructed the four-loop dilatation operator of the su(2)
sector from Feynman graphs. They confirm

β(3)
2,3 = 4 ζ(3) .



10 Magic Kernels

We decompose the “main scattering” kernel into two parts

K̂m(t, t′) = K̂0(t, t
′) + K̂1(t, t

′) ,

even and odd, respectively, under t → −t, t′ → −t′:

K̂0(t, t
′) =

tJ1(t)J0(t′)− t′J0(t)J1(t′)

t2 − t′2
,

K̂1(t, t
′) =

t′J1(t)J0(t′)− tJ0(t)J1(t′)

t2 − t′2
.

The component K̂1 causes the odd zeta contributions to f(g):

σ̂0(t) =
t

et − 1

[
K̂0(2 g t, 0)− 4 g2

∫ ∞

0
dt′ K̂0(2 g t, 2 g t′) σ̂0(t

′)
]

leads to f0(g).

• Replace K̂0 by K̂m − K̂1. Note K̂1(t, 0) = 0.

• Substitute σ̂0 into the convolution on K̂1.

σ̂0(t) =
t

et − 1

[
K̂m(2 g t, 0) + K̂c(2 g t, 0)

− 4g2

∫ ∞

0
dt′

(
K̂m(2 g t, 2 g t′) + K̂c(2 g t, 2 g t′)

)
σ̂0(t

′)
]

with the function K̂c

K̂c(t, t
′) = 4 g2

∫ ∞

0
dt′′ K̂1(t, 2 g t′′)

t′′

et′′ − 1
K̂0(2 g t′′, t′).

• K̂c has the form of a dressing kernel.

• At weak coupling the coefficients β(l)
r,s can easily be derived in closed

form. The kernel satisfies the constraint from Feynman graphs.



Flipping odd zeta contributions:

Any Fredholm II equation

σ(t) = P (t) − 4g2

∫
dt′K(t, t′) σ(t′)

may be solved by iteration:

σ =
∞∑

n=0

(−4g2)n(K ∗)n P

(The star denotes a convolution.)

In our case:
K = K0 + K1 + 8g2 K1 ∗K0

• The resolvent is a sum of words consisting of K0, K1.

• The dressing kernel changes the sign of appending K1 after K0.

• In the perturbative expansion, each beginning and each end of a
K1 string in a word produces an odd zeta function, because K1 is
odd in both arguments, while K0 is even.

With or without dressing kernel, the scaling function contains terms
with 2 m odd zeta functions. The relative sign of such terms is (−1)m.



11 Numerics by BBKS

The fact that

K̂0(t, t
′) =

∞∑

n=1

2 (2n− 1)
J2n−1(t)

t

J2n−1(t′)

t′

K̂1(t, t
′) =

∞∑

n=1

2 (2n)
J2n(t)

t

J2n(t′)

t′

led BBKS to expand in terms of the eigenfunctions

Fn =
Jn(2 g t)

2 g t
.

Let

s(t) =
et − 1

t
σ̂(t) =

∞∑

n=1

sn(g) Fn ,

Zmn(g) =

∫ ∞

0
dt

Jm(2 g t) Jn(2 g t)

t (et − 1)
.

The integral equation becomes (dressing included)
∞∑

n=1

sn Fn = F1 + 8
∞∑

n=1

nZ2n,1 F2n − 2
∞∑

m,n=1

nZnm sm Fn

− 16
∞∑

l,m,n=1

n (2m− 1) Z2n,2m−1 Z2m−1,l sl F2n

which BBKS make into a matrix problem by taking the Fn out and
truncating the sums. The energy is

f+(g) = 8 g2 s1 .



Plot and extrapolation taken from BBKS.

f(g), f0(g), f+(g).

• The matrix rank should not go much beyond the value for g. The
numerics is reliable up to g ≈ 20.

• The transition to the linear regime happens around g ≈ 1. Ex-
trapolation is well behaved.

Strong coupling behaviour of f+(g):

f+(g) = 4.000000 g − 0.661907 − 0.0232 g−1 + . . .

Error: ±{1, 2, 1} in the last digit displayed.

Exact result: GKP, FT

f+(g) = 4 g − 3 log(2)

π
− ?



12 BES: Dressing is Nesting

Odd rows:

0 = s2m−1 − δm,1 + 2 (2m− 1) Z2m−1,r sr

Even rows:

0 = s2n− 8 nZ2n,1 + 2 (2n) Z2n,r sr + 16 n (2m−1) Z2n,2m−1 Z2m−1,r sr

or

0 = s2n + 2 (2n) Z2n−1,2m−1 s2m−1 − 2 (2n) Z2n−1,2m s2m

Multiply by Fn and sum over the free index:

σ̂o(t) =
t

et − 1

[
J1(2 g t)

2 g t
− 4g2

∫ ∞

0
dt′ K̂0(2 g t, 2 g t′) (σ̂e + σ̂o)(t

′)

]

σ̂e(t) =
t

et − 1

[
−4g2

∫ ∞

0
dt′ K̂1(2 g t, 2 g t′) (σ̂e − σ̂o)(t

′)

]

where

σ̂o(t) =
t

et − 1

∞∑

n=1

s2n−1 F2n−1 , σ̂e(t) =
t

et − 1

∞∑

n=1

s2n F2n .

Rescale
u → u/ε , ε = 1/(2g) , σo,e → ε2 σo,e . σ± = σe ± σo .

Odd:

2π σo(u)−2

∫ ∞

−∞

du′ σo(u′) ε

(u− u′)2 + ε2
+

∫ ∞

−∞
du′ K̃0(u, u′)

(
σ+(u′)− 1

π

)
= 0

Even:

2π σe(u)− 2

∫ ∞

−∞

du′ σe(u′) ε

(u− u′)2 + ε2
+

∫ ∞

−∞
du′ K̃1(u, u′) σ−(u′) = 0



13 Strong Coupling Limit in the u-Picture

Backward Fourier transform of the BBKS numerical analysis:

• For g →∞, u scales with 2g. Rescale and expand in ε = 1/(2g).

Further:

• The kernels K̃0,1 are given in terms of the x±(u) functions. Their
square root branch cut forces to distinguish the regimes |u| ≶ 1.

• The FT of F2n−1 tends to zero outside the interval |u| < 1, so that

σ,
o(u) = 0 : |u| > 1 .

Odd,, independent variable |u| < 1 :

σ+ ,(u′) =
1

π
: |u′| < 1

Odd,, |u| > 1 : Not new

Even,, |u| < 1 :
(∫ −1

−∞
+

∫ ∞

1

)
du′

√

1− 1

(u′)2
u′

u− u′
σ− ,(u′)

= −α + π
√

1− u2 σ− ,(u)

Here

α =

∫ ∞

−∞
du σ− ,(u) .

Even,, |u| > 1 : Identically zero



Evens,, |u| > 1 :

−α = u

√
1− 1

u2
−
∫ ∞

−∞
du′

1

u− u′
σ+ ,(u′) +

(
−
∫ −1

−∞
+−

∫ ∞

1

)
du′

√

1− 1

(u′)2
u′

u− u′
σ− ,(u′)

• Equation on σe(u) : |u| > 1

• Put u = coth(x) and solve by Fourier transform (like KSV).

• Even, fixes σe(u) : |u| < 1.

• Odds, yields σo(u) = 0 : |u| > 1 and σ+ s,(u) = 0 : |u| < 1.

• Solution also in AABEK, KSV ht/0703031, BdAF ht/0703131

πσ(u) =

(
1− 1

2
θ(|u| − 1)

[(
u + 1

u− 1

)1
4

+

(
u− 1

u + 1

)1
4
])

+ . . .

• The solution reproduces the GKP value for the leading energy.

• We found an algebraic function carrying log(s) as a coefficient.

• A gap opens:

σ(u) = 1/π + 0 ε + . . . : |u| < 1 .



14 NLO - Work in Progress (AABEK)

In the BBKS t-Picture the leading solution corresponds to

s,
2n−1 =

(−1)n−1(2n− 1)!!

2n(n− 1)!
, s,

2n = s,
2n−1.

Note: These are the Taylor coefficients of (1 + x)−3/2.

• In the u-picture, the higher orders contain non-integrable singu-
larities. An order-by-order treatment is perhaps impossible.

• The branch points u = ±1 become relevant, c.f. KSV.

• In the t-picture, expanded in powers of g−1, we meet divergent
sums as the matrix rank is taken to infinity.

Nonetheless, the t-picture NLO matrix equations are solved by

ss,
2m−1 = (−1)m

2m− 1

2

[
b

6

(2m− 1)!!

(2m− 4)!!
− 2c

(2m− 1)!!

(2m− 2)!!

]
,

ss,
2m = (−1)m m

[
b

6

(2m + 1)!!

(2m− 2)!!
+ 2c

(2m− 1)!!

(2m− 2)!!

]

with b and c left undetermined. The numerical best-fit is

b =
1

2
+

3 log(2)

π
, c = − 3 log(2)

8π
.

• The logarithm may be an accumulative effect of all higher orders,
c.f. KSV.

• CK ht/07050890 derived the NLO energy directly from the dressed
Bethe ansatz.



15 Conclusions

• We have discussed the all-loops Bethe ansatz for the derivative
operator sector. The energy of the lowest lying state scales log-
arithmically with the total spin s as the number of derivatives
becomes large.

• We have shown how the one-loop logarithm carries over to the
higher order contributions. The coefficient of log(s) is the “scaling
function” f(g).

• The weak coupling (gauge theory) Bethe ansatz is fixed up to
four loops by current data. It contains a “dressing factor” which
becomes relevant at four loops and beyond.

• At strong-coupling (string theory) the dressing phase had been
conjectured on grounds of calculational data paired with crossing
symmetry constraints. We have presented the weak coupling ex-
pansion of this string theory dressing phase and discussed its effect
on the scaling function.

• The four-loop term of the result f+(g) agrees with field theory
calculations!

• Our result explains the string theory/field theory “discrepancies”
within the AdS5/CFT4 duality. It supports the original form of the
AdS/CFT conjecture whereas the weak coupling dressing phase
breaks perturbative BMN scaling at four loops and beyond.

• We have “unnested” the dressing phase on the expense of intro-
ducing an auxiliary density, in the spirit of RSZ ht/0702151 and
SS ht/0703177.

• We have analytically derived the strong coupling limit of the root
density of the BES equation, and presented some preliminary re-
sults on the NLO correction. A systematic understanding of the
higher orders is still lacking.



16 Outlook

• The “unnesting” of the dressing phase might signal the possibility
of introducing another level into the nested Bethe ansatz (c.f. BS)
describing the spectrum of operators.

• We need to understand the strong-coupling behaviour of the scal-
ing function by analytic means. The two-loop energy can hopefully
be calculated from the AdS sigma model, c.f. RTT ht/07043638.

• The scaling function f(g) escapes the problem of “wrapping” be-
cause of the L independence of the underlying integral equation.
This is not so for “short” operators. The calculation of the four-
loop anomalous dimension of the Konishi field would help to under-
stand wrapping effects. We plan to draw upon a method developed
for the calculation of a class of three-loop anomalous dimensions.

• The scaling function, which we obtained from the Bethe ansatz,
also occurs as a coefficient in the iteration relation for MHV am-
plitudes proposed by BDS. We should try to understand how the
recursive structure of these amplitudes is related to integrability.

• Four-point functions of BPS operators seem to show iterative pat-
terns, too. We will attempt a calculation of the three-loop four-
point function of the stress tensor multiplet in N = 4 SYM. Hope-
fully, we will discover a guiding principle like the “rung rule” of
BCDKS.


