Institut de Physique Théorique
Direction de la Recherche Fondamentale  -  Saclay
UMR 3681 - INP
encart droite
Encart de droite, peut être utilisé à des fins diverses. Actuellement caché via les CSS.
Mercredi 16 août 2017


Séminaire de physique mathématique
Vendredi 21/04/2017, 14h15
Pièce 35, Bât. 774, Orme des Merisiers
New critical phenomena in the constrained random networks
Alexander Gorsky
IITP, Moscow

We discuss new phenomena in the Erdos-Renyi networks supplemented by the degree conservation constraint and in regular random graphs. The key tool is the analysis of spectral properties of adjacency and Laplacinan matrices in particular the phenomena of eigenvalue tunneling. When the chemical potential for the triangles is introduced the networks undergo the complete defragmetration into the maximally possible number of cliques generalizing the Strauss phase. If the chemical potentials for the unicolor trimers are introduced in the multicolor constrained networks it turns out that they are absolutely unstable with respect to fragmetration into the weakly coupled multilayer networks. The phenomena of the finite plateau formation for the network spectral gap occurs at some interval of chemical potentials for trimers. The localization-delocalization transition in the constrained networks will be explained.

993368.pdf (16 Ko)

Contact : Loic BERVAS

Retour en haut