Pile-up subtraction for jets at the LHC

Grégory Soyez
IPhT, CEA Saclay

with Matteo Cacciari, Gavin Salam and Jihun Kim
Brief plan

- Jets
 - Concept and importance
 - Milestones
 - Jet definition
 - A few examples

- Jets and soft backgrounds
 - an unprecedented challenge at the LHC
 - area-based background subtraction
What is a “jet”? concept/idea
Final-state events are pencil-like already observed in e^+e^- collisions:

Consequence of the collinear divergence
QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$
Final-state events are pencil-like already observed in e^+e^- collisions:

Consequence of the collinear divergence QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$

“Jets” \equiv bunch of collimated particles \simeq hard partons
Final-state events are pencil-like already observed in e^+e^- collisions:

Consequence of the collinear divergence QCD (quark & gluon) branching proba: $\frac{dP}{d\theta} \propto \frac{\alpha_s}{\theta}$

“Jets” \equiv bunch of collimated particles \cong hard partons
Jets and partons

“Jets” ≡ bunch of collimated particles ≈ hard partons

obviously 2 jets
“Jets” ≡ bunch of collimated particles ≈ hard partons

3 jets
“Jets” \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?

“collinear” is arbitrary
“Jets” ≡ bunch of collimated particles ≈ hard partons

3 jets... or 4?

- “collinear” is arbitrary
- “parton” concept strictly valid only at LO
Jet definition

Partons/Particles/Calorimeter towers/Tracks

Jet definition

Jet algorithm Parameters

Jets
What is a “jet”?

jet definition(s)
Naive approach

Have students/postdocs look at the events

The LHC records ~ 500 events/second
Looking at one event takes, say, 5 seconds

\Rightarrow hire 2500 students/postdocs
cost ~ 20M euros/year.

Impractical!

Use computer code
Jet definition

A jet definition is supposed to
- give finite jet cross sections (th)
- be fast enough (exp)
- be (as) consistent (as possible) across different view of an event (th&exp)

LO partons

NLO partons

parton shower

hadron level
A brief/rough flight over the history of jets
A brief/rough flight over the history of jets

Sterman-Weinberg: cone algorithm

Stable flow of energy in a cone of fixed opening angle
A brief/rough flight over the history of jets

1979
Sterman-Weinberg: cone algorithm

1980
SNOWMASS accords (Tevatron): rules for jet definitions
A brief/rough flight over the history of jets

- **1979**
 - Sterman-Weinberg: cone algorithm

- **1980**
 - SNOWMASS accords (Tevatron): rules for jet definitions

- **80’s**
 - Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)

- **1990**

- **2000**

- **2010**

Successive pairwise mergings (minimum “distance”)

- **1980**
 - SNOWMASS accords (Tevatron): rules for jet definitions
 - Sterman-Weinberg: cone algorithm
A brief/rough flight over the history of jets

1979
- Sterman-Weinberg: cone algorithm

1980
- SNOWMASS accords (Tevatron): rules for jet definitions

80’s
- Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)

90’s
- Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
 - k_t and friends too slow
A brief/rough flight over the history of jets

- 1979: Sterman-Weinberg: cone algorithm
- 1980: SNOWMASS accords (Tevatron): rules for jet definitions
- 80’s: Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)
- 90’s: Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
 - k_t and friends too slow
- 2010: Getting ready for the LHC: ATLASCon, CMSIterativeCone
- 1980: SNOWMASS accords (Tevatron): rules for jet definitions
- 1979: Sterman-Weinberg: cone algorithm
A brief/rough flight over the history of jets

- **1980**
 - Sterman-Weinberg: cone algorithm
 - SNOWMASS accords (Tevatron): rules for jet definitions

- **1990's**
 - Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)

- **2000's**
 - Getting ready for the LHC: ATLASCones, CMSIterativeCone
 - Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
 - k_t and friends too slow

- **2006**
 - No finite cone so far! SISCones OK
 - k_t made fast (FastJet)

- **2007**
 - (CMS)cone cured by recombinations: anti-k_t

- **2008**
 - Jet-area-based background subtraction methods

- **2010**
A brief/rough flight over the history of jets

- **1979**
 - Sterman-Weinberg: cone algorithm

- **1980**
 - SNOWMASS accords (Tevatron): rules for jet definitions

- **80’s**
 - Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)

- **90’s**
 - Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
 - k_t and friends too slow

- **2000**
 - k_t made fast (FastJet)

- **2006**
 - (CMS)cone cured by recombinations: anti-k_t

- **2007**
 - No finite cone so far! SISCones OK

- **2008**
 - Getting ready for the LHC: ATLASCones, CMSIterativeCone

Jet-area-based background subtraction methods

[M.Cacciari,G.Salam, 0707.1378; M.Cacciari,G.Salam,GS, 0802.1188]

(CMS)cone cured by recombinations: anti-k_t

[M.Cacciari,G.Salam,GS, 0802.1189]

No finite cone so far! SISCones OK

[G.Salam,GS, 0704.0292]

k_t made fast (FastJet)

[M.Cacciari,G.Salam, 0512210; M.Cacciari,G.Salam,GS,1111.6097]

– Getting ready for the LHC: ATLASCones, CMSIterativeCone
– Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
– k_t and friends too slow

– Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
– Used at LEP (many QCD studies)
A brief/rough flight over the history of jets

- The LHC uses anti-k_t, FastJet and Jet-area-based subtraction

Jet-area-based background subtraction methods
[M.Cacciari,G.Salam, 0707.1378; M.Cacciari,G.Salam,GS, 0802.1188]

(CMS)cone cured by recombinations: anti-k_t
[M.Cacciari,G.Salam,GS, 0802.1189]

No finite cone so far! SISCones OK
[G.Salam,GS, 0704.0292]

k_t made fast (FastJet)
[M.Cacciari,G.Salam, 0512210; M.Cacciari,G.Salam,GS,1111.6097]

- Getting ready for the LHC: ATLASCones, CMSIterativeCone

- Tevatron: back to the cone: CDFJetClu, CDFMidPoint, D0MidPoint
 - k_t and friends too slow

- Recombination algs: JADE, Durham(k_t), Cambridge/Aachen
 - Used at LEP (many QCD studies)

SNOWMASS accords (Tevatron): rules for jet definitions
What is a “jet”?

jets at the LHC
The anti-k_t jets

- All experiments use the anti-k_t algorithm:
 - [M. Cacciari, G. Salam, GS, 2008]
 - From all the objects, define the distances
 \[
 d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2})(\Delta y_{ij}^2 + \Delta \phi^2), \quad d_{iB} = k_{ti}^{-2}R^2
 \]
 - repeatedly find the minimal distance
 if d_{ij}: recombine i and j into $k = i + j$
 if d_{iB}: call i a jet

- R is a size parameter (eg CMS: 0.5, 0.7, ATLAS: 0.4, 0.6)
- Main property: hard jets are circular
Clustering in action: anti-k_t ($R = 0.6$)

Start with your favourite picture
Clustering in action: anti-k_t ($R = 0.6$)

Start with your favourite picture event
Clustering in action: anti-k_t ($R = 0.6$)

p_t/GeV

dmin is $d_{ij} = 3.90625 \times 10^{-5}$

min is $d_{ij} = 3.9 \times 10^{-5}$
Clustering in action: anti-k_t ($R = 0.6$)

recombine them
Clustering in action: anti-k_t ($R = 0.6$)

d_{min} is $d_{ij} = 8.91301 \times 10^{-5}$

\min is $d_{ij} = 8.9 \times 10^{-5}$
Clustering in action: anti-k_t ($R = 0.6$)

recombine them
Clustering in action: anti-k_t ($R = 0.6$)

\[\text{min is } d_{ij} = 7.6 \times 10^{-5} \]

\[\text{dmin is } d_{ij} = 7.59102 \times 10^{-5} \]
Clustering in action: anti-\(\kappa_t\) \((R = 0.6)\)

recombine them
Clustering in action: anti-k_t ($R = 0.6$)

\[d_{\text{min}} \text{ is } d_{iB} = 7.3 \times 10^{-5} \]
Clustering in action: anti-k_t ($R = 0.6$)

p_t/GeV

declare as a jet
Clustering in action: anti-k_t ($R = 0.6$)

p_t/GeV

d_{min} is $d_{ij} = 0.000277778$

$\text{min is } d_{ij} = 2.8 \times 10^{-4}$
Clustering in action: anti-k_t ($R = 0.6$)

recombine them
Clustering in action: anti-k_t ($R = 0.6$)

dmin is $d_{ij} = 0.00018523$

min is $d_{ij} = 1.9 \times 10^{-4}$
Clustering in action: anti-k_t ($R = 0.6$)

recombine them
Clustering in action: anti-k_t ($R = 0.6$)

p_t/GeV

$d_{\min} \text{ is } d_{i\text{B}} = 0.00020975$

$\min \text{ is } d_{i\text{B}} = 2.1 \times 10^{-4}$
Clustering in action: anti-k_t ($R = 0.6$)

declare as a jet
Clustering in action: anti-k_t ($R = 0.6$)

\[
\begin{align*}
\text{dmin is } d_{iB} &= 0.00145785 \\
\text{min is } d_{iB} &= 1.5 \times 10^{-3}
\end{align*}
\]
Clustering in action: anti-k_t ($R = 0.6$)

DECLARE AS A JET
Tevatron era: k_t too slow: $O(N^3)$ for N particles
FastJet (1/2)

- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-)k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$

- the “FastJet lemma”: min distance is a Nearest Neighbour
- use of computational geometry e.g. Voronoi diagram
Grown way beyond just fast recombinations:
- plugins for used jet definitions
- jet areas and background subtraction (see below)
- tools for manipulating jets
- more to come...

FastJet 3.0.3 released in June 2012
see www.fastjet.fr

Standard interface for jet clustering
for both theorists and experimentalists
Jets in a soft background
$Z \rightarrow \ell^+ \ell^-$ candidate at ATLAS

Low luminosity
(bunch population)
$Z \rightarrow \ell^+ \ell^-$ candidate at ATLAS

Low luminosity (bunch population)

High luminosity (bunch population)

- many (soft) pp interactions with the hard one (here 25)
- soft background in all the detector
A CMS event with 78 pile-up vertices!

Today (2012 run), 30 PU vertices on average
Basic characterisation

Pileup mostly characterised by 3 numbers:

- ρ: the average activity in an event (per unit area)
- σ: the intra-event fluctuations (per unit area)
- σ_ρ: the event-to-event fluctuations of ρ
Basic characterisation

Pileup mostly characterised by 3 numbers:

- ρ: the average activity in an event (per unit area)
- σ: the intra-event fluctuations (per unit area)
- σ_ρ: the event-to-event fluctuations of ρ

For a jet (of area A) in a given event that means:

$$p_t \rightarrow p_t + \rho A \pm \sigma \sqrt{A}$$

When averaging over many events

$$p_t \rightarrow p_t + \langle \rho \rangle A \pm \sigma_\rho A \pm \sigma \sqrt{A}$$
Illustration of the consequences

- Shift due to the “ρA” term
- Smearing due to the “σA” and “$\sigma \sqrt{A}$” terms
Heavy ions

Note: same considerations for “spectator p and n” in heavy ion collisions

Typical case: anti-k_t $R = 0.4$, 20 PU or $0-10\%$ centrality

<table>
<thead>
<tr>
<th>Estimates</th>
<th>LHC, pp</th>
<th>LHC, $PbPb$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>15 GeV</td>
<td>200 GeV</td>
</tr>
<tr>
<td>σ_ρ</td>
<td>4 GeV</td>
<td>40 GeV</td>
</tr>
<tr>
<td>σ</td>
<td>5 GeV</td>
<td>20 GeV</td>
</tr>
<tr>
<td>A_{jet}</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$\delta p_{t,\text{jet}}$</td>
<td>7.5 GeV</td>
<td>100 GeV</td>
</tr>
<tr>
<td>σ_{jet}</td>
<td>3.5 GeV</td>
<td>16 GeV</td>
</tr>
</tbody>
</table>
Naive subtraction methods

Shift: one subtracts a contribution from the jet
Examples:

• subtract a constant number from each jet
 Keep both PU fluctuations + area fluctuations

• subtract a constant density from each jet
 Keep both PU fluctuations \((\sigma \sqrt{A} & \sigma_\rho A)\)

• subtract a constant density for each PU vertex from each jet
 Keeps \(\sigma \sqrt{A}\) and part of \(\sigma_\rho A\)
Jet-area-based subtraction

M.Cacciari, G.P. Salam, 07; M.Cacciari, G.P. Salam, GS, 2008

\[p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{est}} A_{\text{jet}} \]

- jet area: available with jet clustering
 - add a dense coverage of particles with tiny p_t (≡ area quanta)
 - jet area \propto number of these “ghosts” in the jet
Jet-area-based subtraction

\[p^{(\text{sub})}_{t,\text{jet}} = p_{t,\text{jet}} - \rho_{\text{est}} A_{\text{jet}} \]

- jet area: available with jet clustering
- \(\rho_{\text{bkg}} \), the background \(p_t \) density per unit area
 - break the event in patches of similar size
 - e.g. cluster with \(k_t \)
 - Estimate \(\rho_{\text{bkg}} \) using
 \[
 \rho_{\text{bkg}} = \text{median} \left\{ \frac{p_{t,j}}{A_j} \right\}
 \]
Jet-area-based subtraction

Jet area A_{jet}: per jet
Bkg density ρ: (typically) per event

Consequences:
- corrects for the ρA shift
- gets rid of the $\sigma_{\rho A}$ smearing (across events)
- left with the fluctuations $\sigma \sqrt{A}$ (in-event)
Subtraction efficiency study:

Generate a hard event → hard jets
Add PU events → full jets
Apply subtraction → subtracted jets
Subtraction benchmarks

Subtraction efficiency study:

Generate a hard event \rightarrow hard jets
Add PU events \rightarrow full jets
Apply subtraction \rightarrow subtracted jets

Δp_t^{unsub}
Δp_t^{sub}
Subtraction benchmarks

Subtraction efficiency study:

- Generate a hard event → hard jets
- Add PU events → full jets
- Apply subtraction → subtracted jets

\[\Delta p_t^{\text{unsub}} \]
\[\Delta p_t^{\text{sub}} \]

\(n_{\text{PU}} \quad \langle \Delta p_t \rangle \quad \text{[GeV]} \)

\(\langle \Delta p_t^{\text{sub}} \rangle \quad \text{OK} \)

LHC, \(\sqrt{s} = 7 \) TeV
anti-\(k_t \)(R=0.5), \(p_t > 200 \) GeV
Subtraction benchmarks

Subtraction efficiency study:

- Generate a hard event → hard jets
- Add PU events → full jets
- Apply subtraction → subtracted jets

\[\Delta p_t^{\text{unsub}} \]
\[\Delta p_t^{\text{sub}} \]

\(\langle \Delta p_t \rangle \) [GeV]

\(\sigma_{\Delta p_t} \) [GeV]

\(n_{\text{PU}} \)

LHC, \(\sqrt{s}=7 \text{ TeV} \)
anti-\(k_t(R=0.5) \), \(p_t>200 \text{ GeV} \)

- shift \(\langle \Delta p_t^{\text{sub}} \rangle \) OK
- resol \(\sigma_{\Delta p_t^{\text{sub}}} \) better

- p. 24
Recent developments

Improvements/extensions of the method

- **Methods to handle positional dependence of** ρ
 - Directly relevant for the LHC (e.g. rapidity dependence)

 [M.Cacciari, G.Salam, GS, 2010-2011]

- **Subtraction of fragmentation function (moments)**
 - Useful for quenching in $PbPb$ collisions

 [M.Cacciari, P.Quiroga, G.Salam, GS, 2012]

- **Subtraction for jet mass and jet shapes**
 - Important for jet tagging ("q v. g jet", b jet, top jet, $H \rightarrow b\bar{b}$)

 [M.Cacciari, J.Kim, G.Salam, GS, soon]
Many recent developments in use at the LHC:

- jet algorithms with finite cross-sect. at all orders
- in particular the anti-k_t algorithm
- FastJet: fast implementations and jet package
- efficient PU subtraction method
- constant interaction with the experiments

Future

- Release FastJet 3.1
- Study filtering/noise-reduction techniques for reduction of the $\sigma\sqrt{A}$ term