Exact results for twist operators in planar $\mathcal{N} = 4$ SYM

Adam Rej

in collaboration with L. Freyhult and M. Staudacher

Max-Planck-Institut für Gravitationsphysik
Albert Einstein Institut

The 12th Claude Itzykson Meeting

Paris, France

21.06.2007
Plan of the talk

- Very brief introduction to the Bethe ansatz
 - The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions : twist-two and three
 - Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
Plan of the talk

- Very brief introduction to the Bethe ansatz
- The $\mathfrak{sl}(2)$ subsector
 - General properties
 - Higher charges
 - Exact solutions: twist-two and three
- Non-Linear Integral Equation
 - Motivation and basic ideas
 - One-loop NLIE for $\mathfrak{sl}(2)$ operators
 - Non-Linear Beisert-Eden-Staudacher equation
 - Finite size corrections
The symmetry algebra of $\mathcal{N} = 4$ SYM is $\mathfrak{psu}(2, 2|4)$.

A convenient choice of the Dynkin diagram is [Beisert, Staudacher '05]

```
\begin{center}
\begin{tikzpicture}
\vertex (1) at (-2,0) [draw] ;
\vertex (2) at (0,0) [draw] ;
\vertex (3) at (2,0) [draw] ;
\vertex (4) at (4,0) [draw] ;
\vertex (5) at (6,0) [draw] ;
\vertex (6) at (8,0) [draw] ;
\vertex (7) at (10,0) [draw] ;
\draw (1) to (2);
\draw (3) to (2);
\draw (5) to (4);
\draw (7) to (6);
\end{tikzpicture}
\end{center}
```

Gauge-invariant operators belong to the unitary representations of the above-mentioned algebra.

The theory in the planar limit $N \to \infty$ is believed to be integrable. As a consequence the problem of finding anomalous dimensions of the operators can be solved without computing a single Feynman diagram!
The symmetry algebra of $\mathcal{N} = 4$ SYM is $\mathfrak{psu}(2, 2|4)$.

A convenient choice of the Dynkin diagram is [Beisert, Staudacher '05]

Gauge-invariant operators belong to the unitary representations of the above-mentioned algebra.

The theory in the planar limit $N \to \infty$ is believed to be integrable. As a consequence the problem of finding anomalous dimensions of the operators can be solved without computing a single Feynman diagram!
The symmetry algebra of $\mathcal{N} = 4$ SYM is $\mathfrak{psu}(2, 2|4)$.

A convenient choice of the Dynkin diagram is [Beisert, Staudacher '05]

![Dynkin diagram](image)

Gauge-invariant operators belong to the unitary representations of the above-mentioned algebra.

The theory in the planar limit $N \to \infty$ is believed to be integrable. As a consequence the problem of finding anomalous dimensions of the operators can be solved without computing a single Feynman diagram!
The symmetry algebra of $\mathcal{N} = 4$ SYM is $\mathfrak{psu}(2,2|4)$.

A convenient choice of the Dynkin diagram is [Beisert, Staudacher '05]

![Dynkin diagram]

Gauge-invariant operators belong to the unitary representations of the above-mentioned algebra.

The theory in the planar limit $N \to \infty$ is believed to be integrable. As a consequence the problem of finding anomalous dimensions of the operators can be solved without computing a single Feynman diagram!
Asymptotic All-Loop Bethe Equations

\[1 = \prod_{j=1}^{K_2} \frac{u_{1,k} - u_{2,j} + \frac{i}{2}}{u_{1,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - g^2/\ x_{1,k}x_{4,j}^+}{1 - g^2/\ x_{1,k}x_{4,j}^-}, \]

\[1 = \prod_{j=1}^{K_2} \frac{u_{2,k} - u_{2,j} - i}{u_{2,k} - u_{2,j} + i} \prod_{j=1}^{K_3} \frac{u_{2,k} - u_{3,j} + \frac{i}{2}}{u_{2,k} - u_{3,j} - \frac{i}{2}} \prod_{j=1}^{K_1} \frac{u_{2,k} - u_{1,j} + \frac{i}{2}}{u_{2,k} - u_{1,j} - \frac{i}{2}}, \]

\[1 = \prod_{j=1}^{K_2} \frac{u_{3,k} - u_{2,j} + \frac{i}{2}}{u_{3,k} - u_{2,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{3,k} - x_{4,j}^+}{x_{3,k} - x_{4,j}^-}, \]

\[1 = \left(\frac{x_{4,k}^-}{x_{4,k}^+} \right)^{L \prod_{j=1}^{K_4} \left(\frac{u_{4,k} - u_{4,j} + i}{u_{4,k} - u_{4,j} - i} \sigma^2(x_{4,k}, x_{4,j}) \right)} \]

\[\times \prod_{j=1}^{K_1} \frac{1 - g^2/\ x_{4,k}^-x_{1,j}}{1 - g^2/\ x_{4,k}^+x_{1,j}} \prod_{j=1}^{K_3} \frac{x_{4,k}^- - x_{3,j}}{x_{4,k}^+ - x_{3,j}} \prod_{j=1}^{K_5} \frac{x_{4,k}^- - x_{5,j}}{x_{4,k}^+ - x_{5,j}} \prod_{j=1}^{K_7} \frac{1 - g^2/\ x_{4,k}^-x_{7,j}}{1 - g^2/\ x_{4,k}^+x_{7,j}}, \]

\[1 = \prod_{j=1}^{K_6} \frac{u_{5,k} - u_{6,j} + \frac{i}{2}}{u_{5,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{x_{5,k} - x_{4,j}^+}{x_{5,k} - x_{4,j}^-}, \]

\[1 = \prod_{j=1}^{K_6} \frac{u_{6,k} - u_{6,j} - i}{u_{6,k} - u_{6,j} + i} \prod_{j=1}^{K_5} \frac{u_{6,k} - u_{5,j} + \frac{i}{2}}{u_{6,k} - u_{5,j} - \frac{i}{2}} \prod_{j=1}^{K_7} \frac{u_{6,k} - u_{7,j} + \frac{i}{2}}{u_{6,k} - u_{7,j} - \frac{i}{2}}, \]

\[1 = \prod_{j=1}^{K_6} \frac{u_{7,k} - u_{6,j} + \frac{i}{2}}{u_{7,k} - u_{6,j} - \frac{i}{2}} \prod_{j=1}^{K_4} \frac{1 - g^2/\ x_{7,k}x_{4,j}^+}{1 - g^2/\ x_{7,k}x_{4,j}^-}, \]
Where [Beisert, Dippel, Staudacher ’04]

\[x(u) = \frac{u}{2} \left(1 + \sqrt{1 - \frac{4g^2}{u^2}} \right), \quad x^\pm = x(u \pm \frac{i}{2}). \]

The higher charges are given by

\[Q_r = \frac{i}{r-1} \sum_{j=1}^{K_4} \left(\frac{1}{(x^+(u_j))^{r-1}} - \frac{1}{(x^-(u_j))^{r-1}} \right) \]

Anomalous dimension corresponds to the \(Q_2 \) charge

\[\gamma(g) = 2g^2 Q_2 \]
Where [Beisert, Dippel, Staudacher ’04]

\[
x(u) = \frac{u}{2} \left(1 + \sqrt{1 - \frac{4g^2}{u^2}} \right), \quad x^\pm = x(u \pm \frac{i}{2}).
\]

The higher charges are given by

\[
Q_r = \frac{i}{r-1} \sum_{j=1}^{K_4} \left(\frac{1}{(x^+(u_j))^{r-1}} - \frac{1}{(x^-(u_j))^{r-1}} \right)
\]

Anomalous dimension corresponds to the \(Q_2\) charge

\[
\gamma(g) = 2g^2 Q_2
\]
Where [Beisert, Dippel, Staudacher '04]

\[x(u) = \frac{u}{2} \left(1 + \sqrt{1 - \frac{4g^2}{u^2}} \right), \quad x^\pm = x(u \pm i\frac{1}{2}). \]

The higher charges are given by

\[Q_r = \frac{i}{r-1} \sum_{j=1}^{K_4} \left(\frac{1}{(x^+(u_j))^{r-1}} - \frac{1}{(x^-(u_j))^{r-1}} \right) \]

Anomalous dimension corresponds to the \(Q_2 \) charge

\[\gamma(g) = 2g^2 Q_2 \]
The $\mathfrak{sl}(2)$ subsector

- The field content:

$$\mathcal{O} = \text{Tr} \left(\mathcal{D}^M \mathcal{Z}^L \right) + \ldots ,$$

where $\mathcal{D} = \mathcal{D}_1 + i \mathcal{D}_2$ and $D_\mu = \partial_\mu + iA_\mu$.

- Asymptotic Bethe equations [Staudacher ’04; Beisert, Staudacher ’05]

$$\left(\frac{x_k^+}{x_k^-} \right)^L = \prod_{j \neq k}^M \frac{x_k^- - x_j^+}{x_k^+ - x_j^-} \frac{1 - g^2 / x_k^+ x_j^-}{1 - g^2 / x_k^- x_j^+} \sigma^2(u_k, u_j).$$

- These equations are valid only up to the wrapping order $\mathcal{O}(g^{2L+4})$.

- At one-loop this is a spin $-\frac{1}{2}$ non-compact magnet.
The $\mathfrak{sl}(2)$ subsector

- The field content:

\[\mathcal{O} = \text{Tr} \left(\mathcal{D}^M \mathcal{Z}^L \right) + \ldots , \]

where $\mathcal{D} = \mathcal{D}_1 + i \mathcal{D}_2$ and $D_\mu = \partial_\mu + i A_\mu$.

- Asymptotic Bethe equations [Staudacher '04; Beisert, Staudacher '05]

\[\left(\frac{x_k^+}{x_k^-} \right)^L = \prod_{j \neq k}^{M} \frac{x_k^- - x_j^+}{x_k^+ - x_j^-} \frac{1 - g^2 / x_k^+ x_j^-}{1 - g^2 / x_k^- x_j^+} \sigma^2(u_k, u_j) . \]

- These equations are valid only up to the wrapping order $\mathcal{O}(g^{2L+4})$.

- At one-loop this is a spin $-\frac{1}{2}$ non-compact magnet.
The $\mathfrak{sl}(2)$ subsector

- The field content:

\[\mathcal{O} = \text{Tr} \left(D^M Z^L \right) + \ldots, \]

where

\[D = D_1 + i D_2 \quad \text{and} \quad D_\mu = \partial_\mu + i A_\mu. \]

- Asymptotic Bethe equations [Staudacher '04; Beisert, Staudacher '05]

\[\left(\frac{x_k^+}{x_k^-} \right)^L = \prod_{j \neq k}^{M} \frac{x_k^- - x_j^+}{x_k^+ - x_j^-} \frac{1 - g^2/x_k^+ x_j^-}{1 - g^2/x_k^- x_j^+} \sigma^2(u_k, u_j). \]

- These equations are valid only up to the wrapping order $\mathcal{O}(g^{2L+4})$.

- At one-loop this is a spin $-\frac{1}{2}$ non-compact magnet.
The $\mathfrak{sl}(2)$ subsector

- The field content:

$$\mathcal{O} = \text{Tr} \left(\mathcal{D}^M \mathcal{Z}^L \right) + \ldots,$$

where $\mathcal{D} = \mathcal{D}_1 + i \mathcal{D}_2$ and $D_\mu = \partial_\mu + iA_\mu$.

- Asymptotic Bethe equations [Staudacher '04; Beisert, Staudacher '05]

$$\left(\frac{x^+_k}{x^-_k} \right)^L = \prod_{j \neq k}^M \frac{x^-_k - x^+_j}{x^+_k - x^-_j} \frac{1 - g^2/x^+_k x^-_j}{1 - g^2/x^-_k x^+_j} \sigma^2(u_k, u_j).$$

- These equations are valid only up to the wrapping order $\mathcal{O}(g^{2L+4})$.

- At one-loop this is a spin $-\frac{1}{2}$ non-compact magnet.
All Bethe roots in this sector are real at weak coupling.

For a fixed value of L the corresponding anomalous dimension of the ground state has the following asymptotic behavior

$$\gamma(g) = 2g^2 Q_2 = f(g) \log M + C(g, L) + O\left(\frac{1}{M}\right)$$

at large values of M.

The scaling function is conjectured to be L independent.

At weak coupling it can be found from the solution of the BES equation [Beisert, Eden, Staudacher '06]

$$f(g) = 16g^2 \sigma(0).$$
All Bethe roots in this sector are real at weak coupling.

For a fixed value of L the corresponding anomalous dimension of the ground state has the following asymptotic behavior

$$\gamma(g) = 2 g^2 Q_2 = f(g) \log M + C(g, L) + O \left(\frac{1}{M} \right)$$

at large values of M.

The scaling function is conjectured to be L independent.

At weak coupling it can be found from the solution of the BES equation [Beisert, Eden, Staudacher '06]

$$f(g) = 16 g^2 \hat{\sigma}(0).$$
All Bethe roots in this sector are real at weak coupling.

For a fixed value of \(L \) the corresponding anomalous dimension of the ground state has the following asymptotic behavior

\[
\gamma(g) = 2 g^2 Q_2 = f(g) \log M + C(g, L) + \mathcal{O}\left(\frac{1}{M}\right)
\]

at large values of \(M \).

The scaling function is conjectured to be \(L \) independent.

At weak coupling it can be found from the solution of the BES equation [Beisert, Eden, Staudacher '06]

\[
f(g) = 16 g^2 \hat{\sigma}(0).
\]
All Bethe roots in this sector are real at weak coupling.

For a fixed value of L the corresponding anomalous dimension of the ground state has the following asymptotic behavior

$$\gamma(g) = 2 g^2 Q_2 = f(g) \log M + C(g, L) + O\left(\frac{1}{M}\right)$$

at large values of M.

The scaling function is conjectured to be L independent.

At weak coupling it can be found from the solution of the BES equation [Beisert, Eden, Staudacher '06]

$$f(g) = 16 g^2 \hat{\sigma}(0).$$
The quantity $\hat{\sigma}(t)$ is the solution of

$$\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2g t, 0) - 4g^2 \int_0^\infty dt' K(2g t, 2g t') \hat{\sigma}(t') \right)$$

It has an interpretation as a fluctuation density [Eden, Staudacher '06]

$$\rho(u) = \rho_0(u) - 8g^2 \frac{\log(M)}{M} \sigma(u)$$

At strong coupling string theory predicts [Gubser, Klebanov, Polyakov '02], [Frolov, Tseytlin, '02]

$$f(g) = 4g - \frac{3 \log 2}{\pi} + O\left(\frac{1}{g}\right)$$

Numerous attempts to check this prediction from the BES equation were undertaken.
The quantity $\hat{\sigma}(t)$ is the solution of

$$\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2g t, 0) - 4g^2 \int_0^\infty dt' K(2g t, 2g t') \hat{\sigma}(t') \right)$$

It has an interpretation as a fluctuation density [Eden, Staudacher '06]

$$\rho(u) = \rho_0(u) - 8g^2 \frac{\log(M)}{M} \sigma(u)$$

At strong coupling string theory predicts [Gubser, Klebanov, Polyakov '02], [Frolov, Tseytlin '02]

$$f(g) = 4g - \frac{3 \log 2}{\pi} + O\left(\frac{1}{g}\right)$$

Numerous attempts to check this prediction from the BES equation were undertaken.
The quantity $\hat{\sigma}(t)$ is the solution of

$$\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2g\,t, 0) - 4g^2 \int_0^\infty dt' K(2g\,t, 2g\,t') \hat{\sigma}(t') \right)$$

It has an interpretation as a fluctuation density [Eden, Staudacher '06]

$$\rho(u) = \rho_0(u) - 8g^2 \frac{\log(M)}{M} \sigma(u)$$

At strong coupling string theory predicts [Gubser, Klebanov, Polyakov '02], [Frolov, Tseytlin, '02]

$$f(g) = 4g - \frac{3 \log 2}{\pi} + \mathcal{O}\left(\frac{1}{g}\right)$$

Numerous attempts to check this prediction from the BES equation were undertaken.
The quantity $\hat{\sigma}(t)$ is the solution of

$$\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2g t, 0) - 4 g^2 \int_0^\infty dt' K(2g t, 2g t') \hat{\sigma}(t') \right)$$

It has an interpretation as a fluctuation density [Eden, Staudacher '06]

$$\rho(u) = \rho_0(u) - 8 g^2 \frac{\log(M)}{M} \sigma(u)$$

At strong coupling string theory predicts [Gubser, Klebanov, Polyakov '02], [Frolov, Tseytlin, '02]

$$f(g) = 4 g - \frac{3 \log 2}{\pi} + O\left(\frac{1}{g}\right)$$

Numerous attempts to check this prediction from the BES equation were undertaken.
Higher charges

- What about the higher charges?

- Starting from the two-loop order they also scale logarithmically

\[Q_r = f_r(g) \log(M) + C_r(g, L) + \mathcal{O}\left(\frac{1}{M}\right) \]

- At weak coupling these scaling functions are \(L \) independent and also obey the *transcendentality principle*, for example

\[
\begin{align*}
f_4(g) &= 16 \zeta(4) g^4 - 16 \left(2 \zeta(2) \zeta(4) + 15 \zeta(6)\right) g^6 \\
&\quad + 32 \left(2 \zeta(2)^2 \zeta(4) + 6 \zeta(4)^2 + 4 \zeta(3) \zeta(5)\right) g^8 + \ldots
\end{align*}
\]
Higher charges

What about the higher charges?

Starting from the two-loop order they also scale logarithmically

\[Q_r = f_r(g) \log(M) + C_r(g, L) + O \left(\frac{1}{M} \right) \quad r = 2, 4, 6, \ldots \]

At weak coupling these scaling functions are \(L \) independent and also obey the transcendentality principle, for example

\[f_4(g) = 16 \zeta(4) g^4 - 16 \left(2 \zeta(2) \zeta(4) + 15 \zeta(6) \right) g^6 \]
\[+ 32 \left(2 \zeta(2)^2 \zeta(4) + 6 \zeta(4)^2 + 4 \zeta(3) \zeta(5) \right) g^8 + \ldots \]
Higher charges

- What about the higher charges?
- Starting from the two-loop order they also scale logarithmically

\[Q_r = f_r(g) \log(M) + C_r(g, L) + O\left(\frac{1}{M}\right) \quad r = 2, 4, 6, \ldots \]

- At weak coupling these scaling functions are L independent and also obey the \textit{transcendentality principle}, for example

\[
\begin{align*}
f_4(g) & = 16 \zeta(4) g^4 - 16 \left(2 \zeta(2) \zeta(4) + 15 \zeta(6)\right) g^6 \\
& + 32 \left(2 \zeta(2)^2 \zeta(4) + 6 \zeta(4)^2 + 4 \zeta(3) \zeta(5)\right) g^8 + \ldots
\end{align*}
\]
Higher charges at strong coupling

The leading density at strong coupling was found in [Alday, Arutyunov, Benna, Eden, Klebanov ’07].

Integrating it over the charge densities gives

\[f_r(g) = \left(\frac{1}{g} \right)^{r-1} \left(\frac{\Gamma\left[\frac{r-1}{2}\right]}{\Gamma\left[\frac{r}{2}\right] \Gamma\left[\frac{1}{2}\right]} - \frac{4}{\pi} \frac{3F_2\left(\frac{3}{2}, \frac{3}{2} - \frac{r}{2}, \frac{1}{2} + \frac{r}{2}; \frac{5}{2} - \frac{r}{2}, \frac{3}{2} + \frac{r}{2}; 1\right)}{(r^2 - 2r - 3)} \right). \]

It would be interesting to compare this result with the string theory prediction.
Higher charges at strong coupling

- The leading density at strong coupling was found in [Alday, Arutyunov, Benna, Eden, Klebanov '07].

- Integrating it over the charge densities gives

\[f_r(g) = \left(\frac{1}{g} \right)^{r-1} \left(\frac{\Gamma\left[\frac{r-1}{2}\right]}{\Gamma\left[\frac{r}{2}\right] \Gamma\left[\frac{1}{2}\right]} - \frac{4}{\pi} \frac{3F_2\left(\frac{3}{2}, \frac{3}{2} - \frac{r}{2}, \frac{1}{2}; \frac{5}{2} - \frac{r}{2}, \frac{3}{2} + \frac{r}{2}; 1\right)}{(r^2 - 2r - 3)} \right). \]

- It would be interesting to compare this result with the string theory prediction.
Higher charges at strong coupling

- The leading density at strong coupling was found in [Alday, Arutyunov, Benna, Eden, Klebanov '07].

- Integrating it over the charge densities gives

 \[f_r(g) = \left(\frac{1}{g} \right)^{r-1} \left(\frac{\Gamma[r-1]}{\Gamma[\frac{r}{2}] \Gamma[\frac{1}{2}]} - \frac{4}{\pi} \frac{3F_2 \left(\frac{3}{2}, \frac{3}{2} - \frac{r}{2}, \frac{1}{2} + \frac{r}{2}; \frac{5}{2} - \frac{r}{2}, \frac{3}{2} + \frac{r}{2}; 1 \right)}{(r^2 - 2r - 3)} \right). \]

- It would be interesting to compare this result with the string theory prediction.
At one-loop Bethe equations are equivalent to the polynomial solution of the Baxter equation

\[
\left(u + \frac{i}{2}\right)^L Q(u + i) + \left(u - \frac{i}{2}\right)^L Q(u - i) = t(u) Q(u),
\]

where

\[
t(u) = 2u^L + \sum_{i=2}^{L} \tilde{q}_i u^{L-i}.
\]

For \(L = 2\) this equation can be exactly solved [Virginia Dippel, unpublished]

\[
Q_2(u) = {}_3\!F_2\left(-M, M + 1, \frac{1}{2} + iu, ; 1, 1; 1\right).
\]
Exact solutions

At one-loop Bethe equations are equivalent to the polynomial solution of the Baxter equation

\[
\left(u + \frac{i}{2}\right)^L Q(u + i) + \left(u - \frac{i}{2}\right)^L Q(u - i) = t(u) Q(u),
\]

where

\[
t(u) = 2u^L + \sum_{i=2}^{L} \tilde{q}_i u^{L-i}.
\]

For \(L = 2 \) this equation can be exactly solved \cite{Virginia Dippel, unpublished}:

\[
Q_2(u) = _3F_2 \left(-M, M + 1, \frac{1}{2} + iu, ; 1, 1; 1 \right).
\]
Twist-three at one-loop

Surprisingly, one can also solve the Baxter equation for the ground state of $L = 3$ [Kotikov, Lipatov, A.R., Staudacher, Velizhanin, '07], [Beccaria, '07]

$$Q_3(u) = {}_4F_3\left(-\frac{M}{2}, \frac{M}{2} + 1, \frac{1}{2} + iu, \frac{1}{2} - iu; 1, 1, 1; 1\right).$$

Defining the nested harmonic sums:

$$S_a(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a))^i}{i|a|}, \quad S_{a_1,...,a_n}(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a_1))^i}{i|a_1|} S_{a_2,...,a_n}(i),$$

one easily derives the corresponding anomalous dimension

$$\gamma_2(M) = 8 S_1 \left(\frac{M}{2}\right).$$
Surprisingly, one can also solve the Baxter equation for the ground state of $L = 3$ [Kotikov, Lipatov, A.R., Staudacher, Velizhanin, '07], [Beccaria, '07]

$$Q_3(u) = 4 F_3 \left(-\frac{M}{2}, \frac{M}{2} + 1, \frac{1}{2} + iu, \frac{1}{2} - iu, ; 1, 1, 1; 1 \right).$$

Defining the nested harmonic sums:

$$S_a(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a))^i}{i |a|}$$

$$S_{a_1,\ldots,a_n}(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a_1))^i}{i |a_1|} S_{a_2,\ldots,a_n}(i),$$

one easily derives the corresponding anomalous dimension

$$\gamma_2(M) = 8 S_1 \left(\frac{M}{2} \right)$$
Surprisingly, one can also solve the Baxter equation for the ground state of \(L = 3 \) [Kotikov, Lipatov, A.R., Staudacher, Velizhanin, '07], [Beccaria, '07]

\[
Q_3(u) = {}_4F_3\left(-\frac{M}{2}, \frac{M}{2} + 1, \frac{1}{2} + iu, \frac{1}{2} - iu ; 1, 1, 1; 1 \right).
\]

Defining the nested harmonic sums:

\[
S_a(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a))^i}{i|a|}, \quad S_{a_1,\ldots,a_n}(M) = \sum_{i=1}^{M} \frac{(\text{sgn}(a_1))^i}{i|a_1|} S_{a_2,\ldots,a_n}(i),
\]

one easily derives the corresponding anomalous dimension

\[
\gamma_2(M) = 8 \, S_1 \left(\frac{M}{2} \right)
\]
Twist-three at higher loops

At higher-loops one can derive

$$\frac{\gamma_{ABA}^4(M)}{4} = -2S_3 - 4S_1 S_2,$$

$$\frac{\gamma_{ABA}^6(M)}{8} = 2S_2 S_3 + S_5 + 4S_{3,2} + 4S_{4,1} - 8S_{3,1,1} + S_1 \left(4S_2^2 + 2S_4 + 8S_{3,1}\right)$$
\[
\frac{\gamma_8^{ABA}(M)}{16} = S_1^3 \left(\frac{40}{3} S_4 - \frac{32}{3} S_{3,1} \right) + S_1^2 \left(20 S_5 - 40 S_{3,2} - 56 S_{4,1} + 64 S_{3,1,1} \right) \\
+ S_1 \left(7 S_6 + 8 S_{2,4} - 24 S_{3,3} - 56 S_{4,2} - 40 S_{5,1} - 24 S_{2,2,2} - 16 S_{2,3,1} + 88 S_{3,1,2} + 88 S_{3,2,1} + 120 S_{4,1,1} - 192 S_{3,1,1,1} - 8 \zeta(3) S_3 \right) - \frac{56}{3} S_3 S_4 - \frac{107}{6} S_7 + 3 S_{2,5} + \frac{41}{3} S_{3,4} + \frac{1}{3} S_{4,3} \\
- 17 S_{5,2} - \frac{20}{3} S_{6,1} - 4 S_{2,2,3} - 8 S_{2,3,2} - 4 S_{2,4,1} + \frac{104}{3} S_{3,1,3} + 52 S_{3,2,2} + \frac{88}{3} S_{3,3,1} + 60 S_{4,1,2} + 60 S_{4,2,1} + 40 S_{5,1,1} + 8 S_{2,3,1,1} - 120 S_{3,1,1,2} - 120 S_{3,1,2,1} - 120 S_{3,2,1,1} - 128 S_{4,1,1,1} + 256 S_{3,1,1,1,1}
\]
It is not known how to derive these formulas (and similar for the twist-two case) analytically from the Bethe ansatz.

There is a detour, however, when one assumes the Kotikov-Lipatov transcendentality principle. [Kotikov, Lipatov '02]

Curiously, only positive indices of the harmonic sums appear.

It would be interesting to investigate in general when the Bethe equations are exactly solvable.
It is not known how to derive these formulas (and similar for the twist-two case) analytically from the Bethe ansatz.

There is a detour, however, when one assumes the Kotikov-Lipatov transcendentality principle. [Kotikov, Lipatov ’02]

Curiously, only positive indices of the harmonic sums appear.

It would be interesting to investigate in general when the Bethe equations are exactly solvable.
It is not known how to derive these formulas (and similar for the twist-two case) analytically from the Bethe ansatz.

There is a detour, however, when one assumes the Kotikov-Lipatov transcendentality principle. [Kotikov, Lipatov ’02]

Curiously, only positive indices of the harmonic sums appear.

It would be interesting to investigate in general when the Bethe equations are exactly solvable.
It is not known how to derive these formulas (and similar for the twist-two case) analytically from the Bethe ansatz.

There is a detour, however, when one assumes the Kotikov-Lipatov transcendentality principle. [Kotikov, Lipatov '02]

Curiously, only positive indices of the harmonic sums appear.

It would be interesting to investigate in general when the Bethe equations are exactly solvable.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?
- Strong-coupling
- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?
- Strong-coupling
- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

- Strong-coupling
- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?
- Strong-coupling
- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

- Strong-coupling
- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $\mathcal{O}(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

Strong-coupling

- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

Strong-coupling

Considering different limits

- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $O(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

Strong-coupling

- Considering different limits
- An independent derivation of the BES equation
 - Relation to the BFKL physics / repairing the asymptotic Bethe equations.
Non-linear Integral Equation

Motivation

- A finite M NLBES equation
- Finite size effects
 - e.g. $\mathcal{O}(M^0)$ corrections
 - A tool for deriving analytically the anomalous dimension in terms of harmonic sums for $L = 2, 3$?

Strong-coupling

- Considering different limits
- An independent derivation of the BES equation
- Relation to the BFKL physics / repairing the asymptotic Bethe equations.
We consider the ground state at fixed L and M.

The basic step towards constructing the NLIE is to introduce the complementary set of solutions of the $\mathfrak{sl}(2)$ Bethe equations, termed holes.

The dynamics of the holes is determined by

$$t_g(u_h) = 0.$$

A proposal for the asymptotic Baxter equation was made in [Belitsky, Korchemsky, Müller '06].

There are precisely L solutions of the above equation and therefore they are to be identified with the \mathcal{Z} fields.
We consider the ground state at fixed L and M.

The basic step towards constructing the NLIE is to introduce the complementary set of solutions of the $\mathfrak{sl}(2)$ Bethe equations, termed holes.

The dynamics of the holes is determined by

$$t_g(u_h) = 0.$$

A proposal for the asymptotic Baxter equation was made in [Belitsky, Korchemsky, Müller '06].

There are precisely L solutions of the above equation and therefore they are to be identified with the \mathcal{Z} fields.
We consider the ground state at fixed L and M.

The basic step towards constructing the NLIE is to introduce the complementary set of solutions of the $\mathfrak{sl}(2)$ Bethe equations, termed holes.

The dynamics of the holes is determined by

$$t_g(u_h) = 0.$$

A proposal for the asymptotic Baxter equation was made in [Belitsky, Korchemsky, Müller '06].

There are precisely L solutions of the above equation and therefore they are to be identified with the Z fields.
We consider the ground state at fixed L and M.

The basic step towards constructing the NLIE is to introduce the complementary set of solutions of the $\mathfrak{sl}(2)$ Bethe equations, termed holes.

The dynamics of the holes is determined by

$$t_g(u_h) = 0.$$

A proposal for the asymptotic Baxter equation was made in [Belitsky, Korchemsky, Müller '06].

There are precisely L solutions of the above equation and therefore they are to be identified with the Z fields.
We consider the ground state at fixed \(L \) and \(M \).

The basic step towards constructing the NLIE is to introduce the complementary set of solutions of the \(\mathfrak{sl}(2) \) Bethe equations, termed holes.

The dynamics of the holes is determined by

\[
t_g (u_h) = 0 .
\]

A proposal for the asymptotic Baxter equation was made in [Belitsky, Korchemsky, Müller '06].

There are precisely \(L \) solutions of the above equation and therefore they are to be identified with the \(\mathcal{Z} \) fields.
\[\text{Tr} \left(D^2 Z DZ D^3 Z DZ DZ DZ DZ DZ \ldots \right) \]
Two out of these L holes are special. [Belitsky, Korchemsky, Gorsky '06]

They scale as

$$u_h^1 = -u_h^2 \approx \frac{M}{\sqrt{2}}.$$

They are responsible for the logarithmic scaling of the anomalous dimension and for the universality of the corresponding scaling function.

The remaining holes contribute starting from the $O \left(\frac{1}{M} \right)$ order.

A closed formula for the hole rapidities is known only in the exceptional cases ($L = 2, 3$), see below.
Two out of these L holes are special. [Belitsky, Korchemsky, Gorsky '06]

They scale as

$$u_h^1 = -u_h^2 \simeq \frac{M}{\sqrt{2}}.$$

They are responsible for the logarithmic scaling of the anomalous dimension and for the universality of the corresponding scaling function.

The remaining holes contribute starting from the $\mathcal{O} \left(\frac{1}{M} \right)$ order.

A closed formula for the hole rapidities is known only in the exceptional cases ($L = 2, 3$), see below.
Two out of these L holes are special. [Belitsky, Korchemsky, Gorsky '06]

They scale as

$$u_h^1 = -u_h^2 \simeq \frac{M}{\sqrt{2}}.$$

They are responsible for the logarithmic scaling of the anomalous dimension and for the universality of the corresponding scaling function.

The remaining holes contribute starting from the $O\left(\frac{1}{M}\right)$ order.

A closed formula for the hole rapidities is known only in the exceptional cases ($L = 2, 3$), see below.
Two out of these L holes are special. \cite{Belitsky, Korchemsky, Gorsky '06}

They scale as

$$u_h^1 = -u_h^2 \simeq \frac{M}{\sqrt{2}}.$$

They are responsible for the logarithmic scaling of the anomalous dimension and for the universality of the corresponding scaling function.

The remaining holes contribute starting from the $\mathcal{O}\left(\frac{1}{M}\right)$ order.

A closed formula for the hole rapidities is known only in the exceptional cases ($L = 2, 3$), see below.
One-loop NLIE

- For the one-loop \(\mathfrak{sl}(2) \) Bethe equations one defines the counting function as

\[
Z(u) = L\phi(u, 1/2) + \sum_{k=1}^{M} \phi(u - u_k) \quad \text{where} \quad \phi(u, \xi) = i \log \left(\frac{i\xi + u}{i\xi - u} \right).
\]

- Bethe roots and the holes satisfy

\[
e^{iZ(u_k)} = (-1)^{\delta - 1} \quad k = 1, \ldots, M + L
\]

- The following identity is crucial in constructing the NLIE [Feverati, Fioravanti, Grinza, Rossi '06]

\[
\sum_{k=1}^{M} f(u_k) = -\int_{-\infty}^{\infty} \frac{dx}{2\pi} f'(x) Z(x) + \\
+ \int_{-\infty}^{\infty} \frac{dx}{\pi} f'(x) \text{Im} \ln \left[1 + (-1)^{\delta} e^{iZ(x+i0)} \right] - \sum_{h=1}^{L} f(x_h).
\]
One-loop NLIE

For the one-loop $\mathfrak{sl}(2)$ Bethe equations one defines the counting function as

$$Z(u) = L\phi(u, 1/2) + \sum_{k=1}^{M} \phi(u - u_k) \quad \text{where} \quad \phi(u, \xi) = i \log \left(\frac{i\xi + u}{i\xi - u} \right).$$

Bethe roots and the holes satisfy

$$e^{iZ(u_k)} = (-1)^{\delta-1} \quad k = 1, \ldots, M + L$$

The following identity is crucial in constructing the NLIE [Feverati, Fioravanti, Grinza, Rossi '06]

$$\sum_{k=1}^{M} f(u_k) = - \int_{-\infty}^{\infty} \frac{dx}{2\pi} f'(x) Z(x) +$$

$$+ \int_{-\infty}^{\infty} \frac{dx}{\pi} f'(x) \Im \ln \left[1 + (-1)^{\delta} e^{iZ(x+i0)} \right] - \sum_{h=1}^{L} f(x_h).$$
One-loop NLIE

For the one-loop $\mathfrak{sl}(2)$ Bethe equations one defines the counting function as

$$Z(u) = L\phi(u,1/2) + \sum_{k=1}^{M} \phi(u - u_k) \quad \text{where} \quad \phi(u,\xi) = i \log \left(\frac{i\xi + u}{i\xi - u} \right).$$

Bethe roots and the holes satisfy

$$e^{iZ(u_k)} = (-1)^{\delta-1} \quad k = 1, \ldots, M + L$$

The following identity is crucial in constructing the NLIE [Feverati, Fioravanti, Grinza, Rossi ‘06]

$$\sum_{k=1}^{M} f(u_k) = -\int_{-\infty}^{\infty} \frac{dx}{2\pi} f'(x) Z(x) +$$

$$+ \int_{-\infty}^{\infty} \frac{dx}{\pi} f'(x) \text{Im} \ln \left[1 + (-1)^{\delta} e^{iZ(x+i0)} \right] - \sum_{h=1}^{L} f(x_h).$$
Using the above identity for $Z(u)$ one gets the non-linear integral equation

$$
Z(u) = iL \log \frac{\Gamma(1/2 + iu)}{\Gamma(1/2 - iu)} + \sum_{j=1}^{L} i \log \frac{\Gamma(-i(u - u_{h}^{(j)}))}{\Gamma(i(u - u_{h}^{(j)}))} \\
+ \lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} \frac{dv}{\pi} \frac{i}{du} \log \frac{\Gamma(-i(u - v))}{\Gamma(i(u - v))} \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right],
$$

The conserved charges are related to $Z(u)$ by

$$
Q_p = - \int \frac{dv}{2\pi} q'_p(v) Z(v) - \sum_{j=1}^{L} q(p)(u_{h}^{(j)}) \\
+ \int \frac{dv}{\pi} q'_p(v) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right]
$$
Using the above identity for $Z(u)$ one gets the non-linear integral equation

$$Z(u) = i L \log \frac{\Gamma(1/2 + iu)}{\Gamma(1/2 - iu)} + \sum_{j=1}^{L} i \log \frac{\Gamma(-i(u - u_{h}^{(j)})/\Gamma(i(u - u_{h}^{(j)})))}{\gamma(u - u_{h}^{(j)}))}$$

$$+ \lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} \frac{dv}{\pi} \frac{d}{du} \log \frac{\Gamma(-i(u - v))}{\Gamma(i(u - v))} \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v + i0)} \right],$$

The conserved charges are related to $Z(u)$ by

$$Q_{p} = - \int \frac{dv}{2\pi} q'_{p}(v) Z(v) - \sum_{j=1}^{L} q_{p}(u_{h}^{(j)})$$

$$+ \int \frac{dv}{\pi} q'_{p}(v) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v + i0)} \right]$$
In particular, one finds for the Q_2 charge

$$Q_2 = 2\gamma L + \sum_{j=1}^{L} \left\{ \psi(1/2 + i\eta_{j}) + \psi(1/2 - i\eta_{j}) \right\}$$

$$+ \int_{-\infty}^{\infty} \frac{dv}{\pi} \frac{d^2}{dv^2} \left(\log \frac{\Gamma (1/2 + iv)}{\Gamma (1/2 - iv)} \right) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right]$$

M dependence is hidden in the hole roots. For example, for $L = 2$

$$\eta_{1}^{1} = -\eta_{2}^{2} = \sqrt{\frac{1}{2} \left(M^2 + M + \frac{1}{2} \right)}$$

Terms involving

$$L(u) = \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(u+i0)} \right]$$

contribute starting from the $\mathcal{O} \left(\frac{1}{M} \right)$ order.
In particular, one finds for the Q_2 charge

$$Q_2 = 2γL + \sum_{j=1}^{L} \left\{ ψ(1/2 + iu_h^{(j)}) + ψ(1/2 - iu_h^{(j)}) \right\}$$

$$+ \int_{-∞}^{∞} \frac{dv}{\pi} \frac{id^2}{dv^2} \left(\log \frac{Γ (1/2 + iv)}{Γ (1/2 - iv)} \right) \text{Im} \log \left[1 + (-1)^δ e^{iZ(v+i0)} \right]$$

M dependence is hidden in the hole roots. For example, for $L = 2$

$$u_h^1 = -u_h^2 = \sqrt{\frac{1}{2} \left(M^2 + M + \frac{1}{2} \right)}$$

Terms involving

$$L(u) = \text{Im} \log \left[1 + (-1)^δ e^{iZ(u+i0)} \right]$$

contribute starting from the $O \left(\frac{1}{M} \right)$ order.
● In particular, one finds for the Q_2 charge

$$
Q_2 = 2\gamma L + \sum_{j=1}^{L} \left\{ \psi\left(\frac{1}{2} + iu_h^{(j)}\right) + \psi\left(\frac{1}{2} - iu_h^{(j)}\right) \right\}
$$

$$
+ \int_{-\infty}^{\infty} \frac{dv}{\pi} i \frac{d^2}{dv^2} \left(\log\frac{\Gamma\left(\frac{1}{2} + iv\right)}{\Gamma\left(\frac{1}{2} - iv\right)} \right) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right]
$$

● M dependence is hidden in the hole roots. For example, for $L = 2$

$$
u_h^1 = -u_h^2 = \sqrt{\frac{1}{2} \left(M^2 + M + \frac{1}{2} \right)}
$$

● Terms involving

$$
L(u) = \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(u+i0)} \right]
$$

contribute starting from the $\mathcal{O}\left(\frac{1}{M}\right)$ order.
At higher loops one defines

\[
Z(u) = \text{Li} \log \frac{x(i/2 + u)}{x(i/2 - u)} + i \sum_{k=1}^{M} \log \frac{i + u - u_k}{i - (u - u_k)}
\]

\[-2i \sum_{k=1}^{M} \log \frac{1 - \frac{g^2}{x^+ x_k^-}}{1 - \frac{g^2}{x^- x_k^+}} - i \sum_{k=1}^{M} \log \sigma^2(u, u_k),\]

The corresponding non-linear integral equation reads...
NLIE at higher loops

At higher loops one defines

\[Z(u) = \text{Li} \log \frac{x(i/2 + u)}{x(i/2 - u)} + i \sum_{k=1}^{M} \log \frac{i + u - u_k}{i - (u - u_k)} \]

\[- 2i \sum_{k=1}^{M} \log \frac{1 - \frac{g^2}{x^+ x_k^-}}{1 - \frac{g^2}{x^- x_k^+}} - i \sum_{k=1}^{M} \log \sigma^2(u, u_k), \]

The corresponding non-linear integral equation reads
\[Z(u) = iL \log \frac{x(i/2 + u)}{x(i/2 - u)} + \int_{-\infty}^{\infty} \frac{dv}{2\pi} \phi'(u - v, 1)Z(v) \]

\[- \sum_{j=1}^{L} \phi(u - u_{h}^{(j)}, 1) - \int_{-\infty}^{\infty} \frac{dv}{\pi} \phi'(u - v, 1)\text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right] \]

\[\int_{-\infty}^{\infty} \frac{dv}{2\pi} \left(-2i \frac{d}{dv} \log \frac{1 + \frac{g^2}{x(i/2+u)x(i/2-v)}}{1 + \frac{g^2}{x(i/2-u)x(i/2+v)}} \right) Z(v) \]

\[- \sum_{j=1}^{L} \left(-2i \log \frac{1 + \frac{g^2}{x(i/2+u)x(i/2-u_{h}^{(j)})}}{1 + \frac{g^2}{x(i/2-u)x(i/2+u_{h}^{(j)})}} \right) \]

\[+ \int_{-\infty}^{\infty} \frac{dv}{\pi} \left(-2i \frac{d}{dv} \log \frac{1 + \frac{g^2}{x(i/2+u)x(i/2-v)}}{1 + \frac{g^2}{x(i/2-u)x(i/2+v)}} \right) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right] \]

\[+ 2 \sum_{r,s} \beta_{r,s} (q_{r}(u)Q_{s} - q_{s}(u)Q_{r}) \]
The conserved charges are related to $Z(u)$ in a similar way, as in the one-loop case

$$Q_p = -\int \frac{dv}{2\pi} q'_p(v)Z(v) - \sum_{j=1}^{L} q_p(u^{(j)}_h)$$

$$+ \int \frac{dv}{\pi} q'_p(v) \text{Im} \log \left[1 + (-1)^{\delta} e^{iZ(v+i0)} \right]$$

and defining

$$Q_p = g^{p-1} i^{p+2} \frac{i}{p-1} \sum_k \left(\frac{1}{(x^+(u_k))^{p-1}} - \frac{(-1)^p}{(x^-(u_k))^{p-1}} \right),$$

one can transform the NLIE equation to
\[Q_p = 2L \int_0^\infty dt \frac{J_0(2g t)J_{p-1}(2g t)}{t(e^t - 1)} \]

\[- \sum_{j=1}^L \int_0^\infty dt \frac{J_{p-1}(2g t)}{t(1 - e^{-t})} \left(e^{-it(u^j_h - i/2)} + e^{it(u^j_h + i/2)} \right) \]

\[- 2 \int_0^\infty \frac{dt}{\pi} \frac{iJ_{p-1}(2g t)e^{-t/2}}{1 - e^{-t}} \hat{L}(t) + \sum_{r=1}^\infty r(-1)^{r+1}Q_{r+1} d_{r+1,p} \]

\[- \sum_{r=1}^\infty \sum_{s=r+1}^\infty 8 \left(2r(2s - 1) d_{2r+1,2s} d_{p,2r+1} Q_{2s} \right. \]

\[+ \left. (2r - 1)(2s - 2) d_{2r,2s-1} d_{p,2s-1} Q_{2r} \right) . \]

- \(d_{r,s} \) are given by

\[d_{r,s}(g) = \int_0^\infty dt \frac{J_{r-1}(2g t)J_{s-1}(2g t)}{t(e^t - 1)} . \]
Non-linear BES equation

In the Fourier space the NLIE generalizes the Beisert-Eden-Staudacher equation to finite values of M

$$
\hat{Z}(t) = \frac{2 \pi L e^\frac{t}{2}}{it(e^t - 1)} J_0(2g t) - \sum_{j=1}^{L} \frac{2 \pi \cos \left(t u_h^{(j)} \right)}{it(e^t - 1)} - \frac{2}{e^t - 1} \hat{L}(t)
$$

$$
+ 8 g^2 \frac{e^\frac{t}{2}}{e^t - 1} \int_0^{\infty} dt' e^{-t'^2} K(2g t, 2g t') \left(t' \hat{L}(t') \right)
$$

$$
- \frac{\pi}{i} \sum_{j=1}^{L} \cos \left(t' u_h^{(j)} \right)
$$

$$
- 4 g^2 \frac{e^\frac{t}{2}}{e^t - 1} \int_0^{\infty} dt' e^{-t'^2} t' K(2g t, 2g t') \hat{Z}(t')
$$

This equation is completely equivalent to the discrete (asymptotic) Bethe equations!
Non-linear BES equation

In the Fourier space the NLIE generalizes the Beisert-Eden-Staudacher equation to finite values of M

\[
\hat{Z}(t) = \frac{2 \pi L e^{\frac{t}{2}}}{i t (e^t - 1)} J_0(2 g t) - \sum_{j=1}^{L} \frac{2 \pi \cos \left(t u_h^{(j)} \right)}{i t (e^t - 1)} - \frac{2}{e^t - 1} \hat{L}(t)
\]

\[
+ 8 g^2 \frac{e^{\frac{t}{2}}}{e^t - 1} \int_0^{\infty} dt' e^{-\frac{t'}{2}} K(2 g t, 2 g t') \left(t' \hat{L}(t') \right)
\]

\[
- \frac{\pi}{i} \sum_{j=1}^{L} \cos \left(t' u_h^{(j)} \right)
\]

\[
- 4 g^2 \frac{e^{\frac{t}{2}}}{e^t - 1} \int_0^{\infty} dt' e^{-\frac{t'}{2}} t' K(2 g t, 2 g t') \hat{Z}(t')
\]

This equation is completely equivalent to the discrete (asymptotic) Bethe equations!
It is a simple application of the above-presented equations to calculate the $O(M^0)$ to the anomalous dimension at arbitrary loop order

$$C(g, L) = \gamma f(g) - 8(7 - 2L)\zeta(3)g^4 + 8\left(\frac{4 - L}{3}\pi^2\zeta(3)\right)$$

$$+ (62 - 21L)\zeta(5)g^6 - \frac{8}{15}\left((13 - 3L)\pi^4\zeta(3)\right)$$

$$+ 5(32 - 11L)\pi^2\zeta(5) + 75(127 - 46L)\zeta(7)\right)g^8$$

$$+ 32\left(\frac{4}{945}(49 - 11L)\pi^6\zeta(3) - (14 - 4L)\zeta(3)^3\right)$$

$$+ \frac{1}{180}(310 - 103L)\pi^4\zeta(5) + \left(\frac{5}{12}(64 - 5L)\pi^2\zeta(7)\right)$$

$$+ \frac{49}{4}(146 - 55L)\zeta(9)\right)g^{10} + \ldots$$
BES from NLBES

In the large M limit the NLBES simplifies to

\[
\hat{Z}(t') = 8 \pi i g^2 \frac{e^{\frac{t}{2}}}{e^t - 1} K(2 g t, 0) \log(M) \\
- 4 g^2 \frac{e^{\frac{t}{2}}}{e^t - 1} \int_0^\infty dt' e^{-\frac{t'}{2}} t' K(2 g t, 2 g t') \hat{Z}(t')
\]

Under the identification

\[
\hat{Z}(t) = 8 \pi i g^2 \frac{e^{\frac{t}{2}}}{e^t - 1} \frac{\sigma(t)}{t} \log(M)
\]

one recovers the BES equation

\[
\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2 g t, 0) - 4 g^2 \int_0^\infty dt' K(2 g t, 2 g t') \hat{\sigma}(t') \right)
\]
In the large M limit the NLBES simplifies to

$$
\hat{Z}(t') = 8 \pi i g^2 \frac{e^{t/2}}{e^t - 1} K(2g t, 0) \log(M)
- 4 g^2 \frac{e^{t/2}}{e^t - 1} \int_0^\infty \! dt' e^{-t'/2} t' K(2g t, 2g t') \hat{Z}(t')
$$

Under the identification

$$
\hat{Z}(t) = 8 \pi i g^2 e^{t/2} \sigma(t) \frac{\sigma(t)}{t} \log(M)
$$

one recovers the BES equation

$$
\hat{\sigma}(t) = \frac{t}{e^t - 1} \left(K(2g t, 0) - 4 g^2 \int_0^\infty \! dt' K(2g t, 2g t') \hat{\sigma}(t') \right)
$$
The above-presented derivation of the BES equation is qualitatively different from the original derivation.

- There is no splitting into the one-loop density and the fluctuation density.
- One can rigorously show which terms can be neglected in the large M limit.
The above-presented derivation of the BES equation is qualitatively different from the original derivation.

- There is no splitting into the one-loop density and the fluctuation density.
- One can rigorously show which terms can be neglected in the large M limit.
The above-presented derivation of the BES equation is qualitatively different from the original derivation.

- There is no splitting into the one-loop density and the fluctuation density.
- One can rigorously show which terms can be neglected in the large M limit.
Conclusions

- All the conserved charges of the $\mathfrak{sl}(2)$ subsector scale as $\log(M)$ at large values of M. This offers the possibility to compare the whole integrable structure on both sides of planar AdS/CFT.

- In some special cases the anomalous dimension can be explicitly found as function of M. It would be interesting to investigate what are the precise conditions for such hyperintegrability.

- The Non-Linear Beisert-Eden-Staudacher equation for the ground states of $\mathfrak{sl}(2)$ was derived.

- This non-linear equation is completely equivalent to the discrete Bethe ansatz.
Conclusions

- All the conserved charges of the $\mathfrak{sl}(2)$ subsector scale as $\log(M)$ at large values of M. This offers the possibility to compare the whole integrable structure on both sides of planar AdS/CFT.

- In some special cases the anomalous dimension can be explicitly found as function of M. It would be interesting to investigate what are the precise conditions for such hyperintegrability.

- The Non-Linear Beisert-Eden-Staudacher equation for the ground states of $\mathfrak{sl}(2)$ was derived.

- This non-linear equation is completely equivalent to the discrete Bethe ansatz.
Conclusions

- All the conserved charges of the $\mathfrak{sl}(2)$ subsector scale as $\log(M)$ at large values of M. This offers the possibility to compare the whole integrable structure on both sides of planar AdS/CFT.

- In some special cases the anomalous dimension can be explicitly found as function of M. It would be interesting to investigate what are the precise conditions for such hyperintegrability.

- The Non-Linear Beisert-Eden-Staudacher equation for the ground states of $\mathfrak{sl}(2)$ was derived.

- This non-linear equation is completely equivalent to the discrete Bethe ansatz.
Conclusions

- All the conserved charges of the $\mathfrak{sl}(2)$ subsector scale as $\log(M)$ at large values of M. This offers the possibility to compare the whole integrable structure on both sides of planar AdS/CFT.

- In some special cases the anomalous dimension can be explicitly found as function of M. It would be interesting to investigate what are the precise conditions for such hyperintegrability.

- The Non-Linear Beisert-Eden-Staudacher equation for the ground states of $\mathfrak{sl}(2)$ was derived.

- This non-linear equation is completely equivalent to the discrete Bethe ansatz.
More conclusions

- With the use of this equation one can derive up to the wrapping order the $O(M^0)$ corrections to the anomalous dimension of twist operators.

- It offers the possibility to derive independently the Beisert-Eden-Staudacher equation.

- It would be interesting to generalize this method to
 - excited states
 - full $psu(2,2|4)$ algebra.
More conclusions

- With the use of this equation one can derive up to the wrapping order the $O(M^0)$ corrections to the anomalous dimension of twist operators.

- It offers the possibility to derive independently the Beisert-Eden-Staudacher equation.

- It would be interesting to generalize this method to
 - excited states
 - full $\mathfrak{psu}(2,2|4)$ algebra.
More conclusions

- With the use of this equation one can derive up to the wrapping order the $O(M^0)$ corrections to the anomalous dimension of twist operators.

- It offers the possibility to derive independently the Beisert-Eden-Staudacher equation.

- It would be interesting to generalize this method to excited states and full $\mathfrak{psu}(2,2|4)$ algebra.
More conclusions

- With the use of this equation one can derive up to the wrapping order the $O(M^0)$ corrections to the anomalous dimension of twist operators.
- It offers the possibility to derive independently the Beisert-Eden-Staudacher equation.
- It would be interesting to generalize this method to excited states
 - full $\mathfrak{psu}(2, 2|4)$ algebra.
More conclusions

- With the use of this equation one can derive up to the wrapping order the $O(M^0)$ corrections to the anomalous dimension of twist operators.
- It offers the possibility to derive independently the Beisert-Eden-Staudacher equation.
- It would be interesting to generalize this method to
 - excited states
 - full $\mathfrak{psu}(2,2|4)$ algebra.