Quark-Gluon Plasma and Heavy Ion Collisions

II – Collective effects, Hydrodynamics, Phenomenology

François Gelis

CEA/Saclay
General outline

I : Physics of the QGP, Field theory at finite T

II : Collective effects, Hydrodynamics, Phenomenology
Collective phenomena

Relativistic hydrodynamics

Phenomenology
Collective phenomena in the QGP
Collective phenomena

- Phenomena involving many elementary constituents
- Long wavelength compared to the typical distance between constituents
- Small frequency or energy

Major collective phenomena:
- Quasi-particles
- Debye screening
- Landau damping
- Collisional width
In order to assess how the medium affects the propagation of excitations, one must compute the photon (gluon) polarization tensor $\Pi^{\mu\nu}(x, y) \equiv \langle J^\mu(x)J^\nu(y) \rangle$.

The photon (or gluon for QCD) self-energy can be resummed on the propagator. Diagrammatically, this amounts to summing:

\[+ \quad + \quad + \quad + \quad + \quad + \ldots \]

The properties of the medium can be read off the analytic properties of this resummed propagator (cuts, poles, ...).
Reminder: the photon polarization tensor $\Pi^{\mu\nu}$ is transverse. At $T = 0$, this implies:

$$\Pi^{\mu\nu}(P) = \left(g^{\mu\nu} - \frac{P^\mu P^\nu}{P^2} \right) \Pi(P^2)$$

- this is due to gauge invariance and Lorentz invariance
- Exercise: this property ensures that the photon remains massless at all orders of perturbation theory

This formula is not valid at $T > 0$, because there is a preferred frame (in which the plasma velocity is zero)

- the tensorial decomposition of $\Pi^{\mu\nu}$ is more complicated, and the photon acquires an effective mass
Dressed propagator

- At finite T, the tensorial decomposition of $\Pi^{\mu\nu}$ is:

$$\Pi^{\mu\nu}(P) = P_T^{\mu\nu}(P) \Pi_T(P) + P_L^{\mu\nu}(P) \Pi_L(P)$$

with the following projectors (in the plasma rest frame)

$$P_{ij}^T(P) = g_{ij} + \frac{p^i p^j}{\vec{p}^2}, \quad P_{0i}^T(P) = 0, \quad P_{00}^T(P) = 0$$

$$P_{ij}^L(P) = -\frac{(p^0)^2 p^i p^j}{\vec{p}^2 P^2}, \quad P_{0i}^L(P) = -\frac{p^0 p^i}{P^2}, \quad P_{00}^L(P) = -\frac{\vec{p}^2}{P^2}$$

- Therefore, we have

$$\Pi^{\mu\mu}(P) = 2\Pi_T(P) + \Pi_L(P), \quad \Pi^{00}(P) = -\frac{\vec{p}^2}{P^2} \Pi_L(P)$$

- This leads to the following propagator:

$$D^{\mu\nu}(P) = P_T^{\mu\nu}(P) \frac{1}{P^2 - \Pi_T(P)} + P_L^{\mu\nu}(P) \frac{1}{P^2 - \Pi_L(P)}$$
Check the following properties of the tensors $P_{T,L}^{\mu \nu}$:

$$P_T^{\mu} = 2$$

$$P_L^{\mu} = 1$$

$$P_T^{\mu} P_T^{\alpha \nu} = P_T^{\mu \nu}$$

$$P_L^{\mu} P_L^{\alpha \nu} = P_L^{\mu \nu}$$

$$P_T^{\mu} P_L^{\alpha \nu} = 0$$
Dressed propagator

- The calculation of Π^μ_μ and Π^{00} can be done for a discrete Matsubara frequency ω_p, and one performs the analytic continuation $i\omega_p \rightarrow p_0$ afterwards.

- Because one is after the long distance properties of the plasma, one also makes the approximation $|\vec{p}| \ll |\vec{k}|$.

(Hard Thermal Loops: Braaten, Pisarski - 1990)

- For instance, the fermionic contribution to the spatial part Π^{ij} of the polarization tensor reads:

$$\omega \cdot p = -\frac{g^2 N_f T}{2} \int \frac{d^3 \vec{k}}{(2\pi)^3} \tilde{\nu}_k \frac{\partial n_F(\vec{k})}{\partial k^l} \left[\delta_{jl} - \frac{\tilde{\nu}_k^i \tilde{\nu}_k^l}{\omega - \tilde{\nu}_k \cdot \vec{p} + i\epsilon} \right]$$

($\tilde{\nu}_k \equiv \vec{k}/|\vec{k}|$, $N_f =$ number of quark flavors)

- Note: with the gluon loop, the only change is $N_f \rightarrow N_f + 2N_c$.
Quasi-particles

The functions $\Pi_{T,L}(P)$ read:

$$\Pi_T(P) = \frac{e^2 T^2}{6} \left[\frac{p_0^2}{p^2} + \frac{p_0}{2p} \left(1 - \frac{p_0^2}{p^2}\right) \ln \left(\frac{p_0 + p}{p_0 - p}\right) \right]$$

$$\Pi_L(P) = \frac{e^2 T^2}{3} \left[1 - \frac{p_0^2}{p^2}\right] \left[1 - \frac{p_0}{2p} \ln \left(\frac{p_0 + p}{p_0 - p}\right) \right]$$

Quasi-particles correspond to poles in the propagator. Their dispersion relation is the function $p_0 = \omega(\vec{p})$ that defines the location of the pole.

The inverse of the imaginary part of p_0 is the lifetime of the quasi-particles (If $\text{Im}(p_0) = 0$, they are stable). In order to be able to talk about quasi-particles, one must have $\text{Im}(p_0) \ll \text{Re}(p_0)$.
Quasi-particles

- Dispersion curves of particles in the plasma:

- Thermal masses due to interactions with the other particles in the plasma:

\[m_q \sim m_g \sim gT \]

- At this order, the quasi-particles are stable
In the complex plane of $\omega/|\vec{p}|$, the dressed propagator has poles (quasi-particles) and a cut (Landau damping):
Debye screening

- A test charge polarizes the particles of the plasma in its vicinity, in order to screen its charge:

\[V(r) = \exp\left(- \frac{m_{\text{debye}}}{m_{\text{debye}}} r \right) \]

- The Coulomb potential of the test charge decreases exponentially at large distance. The effective interaction range is:

\[\ell \sim \frac{1}{m_{\text{debye}}} \sim \frac{1}{gT} \]

- Note: static magnetic fields are not screened by this mechanism (they are screened over length-scales \(\ell_{\text{mag}} \sim \frac{1}{g^2T} \))
Debye screening

- Place a quark of mass M at rest in the plasma, at $\vec{r} = 0$

- Scatter another quark off it. The scattering amplitude reads

\[
\mathcal{M} = \left[g\bar{u}(\vec{k}')\gamma_\mu u(\vec{k}) \right] \left[g\bar{u}(\vec{P}')\gamma_\nu u(\vec{P}) \right] \sum_{\alpha=T,L} \frac{P_\alpha^{\mu\nu}(Q)}{Q^2 - \Pi_\alpha(Q)}
\]

- If $\vec{P} = 0$ (test charge at rest), only $\alpha = L$ contributes

- From $(P + Q)^2 = M^2$, we get a $2\pi\delta(q_0)/2M$

- For the scattering off an external potential A^μ, the amplitude is

\[
\mathcal{M} = \left[g\bar{u}(\vec{k}')\gamma_\mu u(\vec{k}) \right] A^\mu(Q)
\]

- Thus, the potential created by the test charge at rest is:

\[
A^\mu(Q) = g \frac{\bar{u}(\vec{P}')\gamma_\nu u(\vec{P})}{2M} \frac{2\pi\delta(q_0)P_L^{\mu\nu}(0, \vec{q})}{\vec{q}^2 + \Pi_L(0, \vec{q})} = \frac{2\pi g\delta^{\mu0}\delta(q_0)}{\vec{q}^2 + \Pi_L(0, \vec{q})}
\]
Debye screening

- By a Fourier transform, we obtain the Coulomb potential:

\[A^0(t, \vec{r}) = g \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{e^{i\vec{q} \cdot \vec{r}}}{\vec{q}^2 + \Pi_L(0, \vec{q})} \]

- If we are in the vacuum, \(\Pi_L = 0 \), and the Fourier transform gives the usual Coulomb law:

\[A^0_{\text{vac}}(t, \vec{r}) = g \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{e^{i\vec{q} \cdot \vec{r}}}{\vec{q}^2} = \frac{g}{4\pi |\vec{r}|} \]

- In a plasma, \(\Pi_L(0, \vec{q}) = \frac{g^2 T^2}{3} \equiv m_D^2 \). The Fourier transform can also be done exactly

\[A^0(t, \vec{r}) = g \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{e^{i\vec{q} \cdot \vec{r}}}{\vec{q}^2 + m_D^2} = \frac{g}{4\pi |\vec{r}|} \ e^{-m_D |\vec{r}|} \]

\(\triangleright \) the potential is unmodified at \(r \ll 1/m_D \), but exponentially suppressed at large distance
Landau damping

- The self-energies $\Pi_{L,T}(p_0, \vec{p})$ have an imaginary part when $|p_0| \leq |\vec{p}|$. This implies that the propagation of space-like modes is attenuated.

- A wave propagating through the plasma is damped because its quanta may be absorbed by particles of the plasma:

\[\omega_c \sim gT \]
Relativistic hydrodynamics
Energy-momentum tensor

- **Noether’s theorem** states that for each continuous symmetry of the Lagrangian, there is an associated conserved current J^μ, such that $\partial_\mu J^\mu = 0$.

- As a consequence, the quantity

$$Q(t) \equiv \int d^3 \vec{x} \ J^0(t, \vec{x})$$

is time independent. Proof:

$$\partial_t Q(t) = \int d^3 \vec{x} \ \partial_t J^0(t, \vec{x}) = - \int d^3 \vec{x} \ \vec{\nabla}_x \cdot \vec{J}(t, \vec{x})$$

$$= - \int d^2 \vec{S} \cdot \vec{J}(t, \vec{x}) = 0$$

- Note: the spatial vector \vec{J} describes the flow of the quantity Q across a surface.
Energy-momentum tensor

- In a theory invariant under translations in time and position, the energy and the momentum are conserved quantities.

- For each direction ν, there is a conserved current, denoted $T^{\mu \nu}$, called the energy-momentum tensor, that obeys

$$\partial_\mu T^{\mu \nu} = 0$$

- The integral over space of the zero component gives the 4-momentum of the system

$$P^\nu = \int d^3\bar{x} \ T^{0\mu}(t, \bar{x})$$

- The vector $T^{i\mu}$ ($i=1,2,3$) represents the flow of the component μ of momentum. For $\mu = 0$, this is an energy flow. For $\mu = 1, 2, 3$, this is a 3-momentum flow and it is thus related to pressure.
Consider a fluid cell at rest, of volume δV. It has an energy $\delta P^0 = \epsilon \delta V$ and a 3-momentum $\delta \vec{P} = 0$. This can be achieved if the energy momentum tensor has the following components:

$$T^{00} = \epsilon, \quad T^{0i} = 0$$

The flow of momentum P^i across an element of surface $d\vec{S}$ is $dP^i = dS^j T^{ji}$. From the definition of the pressure p, this must be equal to pdS^i. Hence $T^{ij} = p\delta^{ij}$.

Therefore, in the local rest frame of the fluid:

$$T^{\mu\nu} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$
In an arbitrary frame where the fluid 4-velocity is v^μ, the energy-momentum tensor can only be built from the symmetric tensors $g^{\mu\nu}$ and $v^\mu v^\nu$. In the local rest frame ($v^\mu = (1, 0, 0, 0)$), we must recover the previous expression. Therefore:

$$T^{\mu\nu} = (p + \epsilon) v^\mu v^\nu - p g^{\mu\nu}$$

Note: this expression is valid only for an ideal fluid, with no dissipative phenomena. In a viscous fluid, there can be a transport of momentum due to the friction of fluid layers that move at different velocities. This is taken into account by additional terms in $T^{\mu\nu}$ that are proportional to the derivatives $\partial_i v^j$, multiplied by the viscosity η.
Ideal hydrodynamics

- The fundamental equation of non viscous hydrodynamics is simply the conservation of the energy-momentum,

\[\partial_\mu T^{\mu \nu} = 0 \]

- In the non-relativistic limit,
 - \(v^\mu \approx (1, \vec{v}) \)
 - \(\epsilon \) becomes the mass density \(\rho \)
 - the pressure \(p \) is much smaller than the energy density \(\epsilon \)

It is easy to check that the above equation is equivalent to the continuity equation for mass and to Euler’s equation:

\[
\begin{align*}
\nu = 0 : & \quad \partial_t \rho + \vec{\nabla} \cdot (\rho \vec{v}) = 0 \\
\nu = i : & \quad \partial_t (\rho v^i) + \partial_j (\rho v^i v^j) + \partial_i p = 0
\end{align*}
\]

Note : the second equation can be cast into the more familiar form

\[
\rho \left[\partial_t + \vec{v} \cdot \vec{\nabla}_x \right] \vec{v} + \vec{\nabla}_x p = 0
\]
Ideal hydrodynamics

- In hydrodynamics, the unknown functions are:
 - $p(t, \vec{x})$, $\epsilon(t, \vec{x})$
 - $v^\mu(t, \vec{x})$ (3 unknowns only, since $v_\mu v^\mu = 1$)

- $\partial_\mu T^{\mu\nu} = 0$ gives only 4 equations

- An additional constraint comes from the equation of state of the matter under consideration, as a relation between the local pressure p and energy density ϵ

- An initial condition $p_0(\vec{x})$, $\epsilon_0(\vec{x})$, $\vec{v}_0(\vec{x})$ must be specified at a certain time t_0. Since the relativistic Euler equation contains only first derivatives in time, this is sufficient to obtain the solution at any time $t > t_0$.
Sound propagation

Consider a small perturbation on top of a static fluid:

\[p = p_0 + p' \]
\[\epsilon = \epsilon_0 + \epsilon' \]

The Euler equation, linearized in the perturbations, read:

\[\partial_t \epsilon' + (p_0 + \epsilon_0) \nabla_x \cdot \vec{v}' = 0 \]
\[(p_0 + \epsilon_0) \partial_t \vec{v}' + \nabla_x p' = 0 \]

Differentiate the 1st equation with respect to time, and eliminate the velocity \(\vec{v}' \). We get:

\[\partial_t^2 \epsilon' = \nabla_x^2 p' \]

For small perturbations, write \(\epsilon' = (\partial \epsilon / \partial p)_0 p' \). Therefore,

\[\frac{1}{c_s^2} \partial_t^2 p' = \nabla_x^2 p' \quad \text{with} \quad c_s^2 \equiv \left(\frac{\partial p}{\partial \epsilon} \right)_0 \]
Phenomenology
Initial energy density

- Bjorken estimate:

\[\epsilon_0 \approx \frac{1}{S_\perp \tau_0} \frac{dE_\perp}{dy} \]

- \(dE_\perp/dy \approx 620 \text{ GeV} \) at RHIC (\(\sqrt{s} = 200 \text{ GeV} \), gold nuclei)

- \(S_\perp \approx 140 \text{ fm}^2 \) for central collisions

- \(\tau_0 \approx 0.15 \text{ fm} \)

\[\therefore \epsilon_0 \approx 30 \text{ GeV/fm}^3 \]

- Reminder: lattice QCD predicts deconfinement at \(\epsilon_{\text{crit}} \sim 1 \text{ GeV/fm}^3 \)

- Note: things look less impressive in terms of the temperature since \(\epsilon \sim T^4 \Rightarrow T/T_{\text{crit}} \sim 30^{1/4} \sim 2.3 \)
Thermal photons

- Photons produced by the QGP:
 - Rate determined by physics at the scale $g^2 T$
 - Very sensitive to the temperature: $dN_\gamma / dt d^3 \vec{x} \sim T^4$
Thermal photons

- Photons produced by the QGP:
 - Rate determined by physics at the scale $g^2 T$
 - Very sensitive to the temperature: $dN_\gamma/dtd^3\vec{x} \sim T^4$

- But very important background...
 - initial photons
 - photons produced by in-medium jet fragmentation
 - photons produced by the hadron gas
 - meson decays
Direct photons at RHIC

\[
d^2N/(\pi dp_T^2 dy) \text{ (GeV/c)}^{-2}
\]

Au+Au \rightarrow \gamma+X [0-10\% central]

- Total: Prompt + Thermal
- Prompt: NLO pQCD \times T_{AA}[0-10\%]
- Thermal: QGP+HRG
- QGP
- HRG
- PHENIX data

Graph:
- Data points for PHENIX data are plotted.
- Theoretical curves represent different contributions (Prompt, Thermal, QGP, HRG).
- The graph shows the distribution of direct photons as a function of transverse momentum \(p_T\) and rapidity \(y\).

Legend:
- Different colors and line styles represent various theoretical models or combinations of them.

Axes:
- \(p_T\) (GeV/c) on the x-axis.
- \(d^2N/(\pi dp_T^2 dy)\) on the y-axis.
High p_{\perp} jets are produced at the initial impact

- Not very interesting by themselves...
High p_\perp jets are produced at the initial impact
- Not very interesting by themselves...

Radiative energy loss when they travel through the QGP
- Sensitive to the energy density of the medium
- Depends on the path length as L^2
- Important modification of the azimuthal correlations
Hadrons are strongly suppressed
- Mesons involving heavy quarks (e.g. D) are also suppressed
- Photons are not suppressed

The correlation at 180° disappears in AA collisions
QGP “opacity”

- Interpretation:
 - Jets escape only if they are produced near the edge and are directed outwards.
 - The opposite jet is totally absorbed.
 ▶ confirms the very large energy density.
Collective flow

- Consider a non-central collision:
Consider a non-central collision:

- Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions.
Consider a non-central collision:

- Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions.
- If these particles were escaping freely, the distribution would remain isotropic at all times.
Collective flow

Consider a non-central collision:

- Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions.
- If these particles were escaping freely, the distribution would remain isotropic at all times.
- If the system has a small mean free path, pressure gradients are anisotropic and induce an anisotropy of the distribution.
Collective flow and ideal hydrodynamics

- Observable: 2nd harmonic of the azimuthal distribution

\[\frac{dN}{d\varphi} \sim 1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \cdots \]

\(v_2 \) measures the ellipticity of the momentum distribution

- Note: even heavy quarks seem to follow this flow
Another success of hydrodynamics

- Hydrodynamics reproduces the hadron spectra at low p_{\perp}
Is the QGP a perfect fluid?

- Note: a **perfect fluid** is a fluid with a **very small viscosity**, that can be described with Euler equations ([ideal hydrodynamics](#)).

- The elliptic flow coefficient v_2 measured at RHIC is well reproduced by ideal hydrodynamics, that has no viscosity.
 - In hydrodynamics, the relevant parameter is the dimensionless ratio η/s of the shear viscosity to the entropy density.
 - It has been concluded from there that the QGP must have a very small ratio η/s.

- In the weakly coupled QGP, η/s is all but small...
Statistical models

- One assumes that particles are produced by a thermalized system with temperature T and baryon chemical potential μ_B.

- The number of particles of mass m per unit volume is:

$$\frac{dN}{d^3 \vec{x}} = \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{e^{(\sqrt{p^2+m^2}-\mu_B Q)/T} \pm 1}$$

- These models reproduce the ratios of particle yields with only two parameters.

- The same models also work for e^+e^- collisions:
 - Standard explanation: randomly filling a phase space leads to exponential distributions.
 - However, this argument alone does not explain why the value of T that comes out is the same as in nucleus-nucleus collisions. Dynamical arguments (about the properties of the vacuum?) may be involved here...
Freeze-out parameters

![Graph showing freeze-out parameters with points for RHIC, SPS, AGS, and SIS. The graph plots T_f [MeV] against μ_B^f [GeV]. The line $\langle E \rangle / \langle N \rangle = 1$ GeV is also shown.]

Legend:
- RHIC
- SPS
- AGS
- SIS
- $\langle E \rangle / \langle N \rangle = 1$ GeV
Strangeness enhancement

- In a nucleon, the distribution of strange quarks is smaller than that of u, d quarks (valence) by a factor of the order of $\alpha_s \sim 0.2–0.3$
 - In pp collisions, less strange particles are produced than non-strange particles

- In the QGP, the average energy of u, d quarks and of the gluons is of the order of the temperature
 - If T is large enough (compared to the mass of the strange quark), then the processes $u\bar{u} \rightarrow s\bar{s}$, $d\bar{d} \rightarrow s\bar{s}$, $gg \rightarrow s\bar{s}$ are not inhibited by the kinematical threshold due to the mass of the s quark

- In this case, the population of strange quarks will become identical to that of light quarks
 - The production of strange hadrons will be enhanced compared to proton-proton collisions

- The interpretation of data based on statistical models works also for strange particles at RHIC
Strangeness enhancement

![Graph showing strangeness enhancement](image)

- Collective phenomena
- Relativistic hydrodynamics
- Phenomenology
 - Initial energy density
 - Initial temperature
 - QGP "opacity"
 - Collective flow
 - Hadronization
- Strangeness
- Deconfinement

François Gelis – 2009
Strangeness enhancement

STAR Preliminary

Yield/N_{part} relative to pp/Be

1

10

100

N_{Part}

$\Omega + \Omega$

Λ

Ξ^-

Ξ^+

N_{part}

Λ

Ξ^-

NA57

STAR

Initial energy density
Initial temperature
QGP "opacity"
Collective flow
Hadronization
Strangeness
Deconfinement

François Gelis – 2009
Lecture II / II – Master 2ème année - spécialité NPAC, Orsay, France, March 2009 - p. 41/45
Debye screening prevents the $Q\bar{Q}$ pair from forming a bound state \cite{MatsuiSatz1986}.
- each heavy quark pairs with a light quark in order to form a D meson.

The inter-quark potential can be calculated using lattice QCD.

Possible observable: $[J/\psi] / [\text{Open charm}]$
- complication: there is also a suppression in proton-nucleus collisions, due to multiple scattering.
J/Psi suppression

- What do we do with this potential?
 - Shröedinger equation for a \(Q\bar{Q} \) bound state:
 \[
 \left[2m_Q + \frac{1}{m_Q} \nabla^2 + U(r, T) \right] \Psi = M(T)\Psi
 \]
 - Non-relativistic
 - Assumes that there are only two-body interactions

- Dissociation temperatures:
 - Dissociation temperatures:
 - \(T_d/T_c \):
 - \(J/\psi \): 2.0
 - \(\chi_c \): 1.1
 - \(\psi' \): 1.1
 - \(\Upsilon \): 4.5
 - \(\chi_b \): 2.0
 - \(\Upsilon' \): 2.0
 - the \(Q\bar{Q} \) states are not dissolved immediately above the critical temperature
... or enhancement?

- Many $Q\overline{Q}$ pairs may be produced in each AA collision
 - Braun-Munzinger, Stachel (2000)
 - Thews, Schroedter, Rafelski (2001)
 - A Q from one pair may recombine with a \overline{Q} from another pair
- Avoids the conclusion of Matsui and Satz’s scenario, provided that the average distance between heavy quarks is smaller than the Debye screening length
- May lead to an enhancement of J/ψ production
J/Psi measurements at RHIC

Collective phenomena
Relativistic hydrodynamics
Phenomenology
- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

CERN

François Gelis – 2009 Lecture II / II – Master 2ème année - spécialité NPAC, Orsay, France, March 2009 - p. 45/45