Quantizing N=2 Multicenter Solutions

Sheer El-Showk

University of Amsterdam

Wed, Oct. 29th 2008, 15:00

Pièce 35, Bât. 774, Orme des Merisiers

N=2 supergravity in four dimensions, or equivalently N=1 supergravity in five dimensions, has an interesting set of BPS solutions that each correspond to a number of charged centers. This set contains black holes, black rings and their bound states, as well as many smooth solutions. Moduli spaces of such solutions carry a natural symplectic form which we determine, and which allows us to study their quantization. By counting the resulting wavefunctions we come to an independent derivation of some of the wall-crossing formulae. Knowledge of the explicit form of these wavefunctions allows us to find quantum resolutions to some apparent classical paradoxes such as solutions with barely bound centers and those with an infinitely deep throat. We show that quantum effects seem to cap off the throat at a finite depth and we give an estimate for the corresponding mass gap in the dual CFT. This is an interesting example of a system where quantum effects cannot be neglected at macroscopic scales even though the curvature is everywhere small.

Contact : Iosif
BENA