The unlikely Carnot efficiency

Christian Van den Broeck

Université Hasselt, Belgique

Mon, Dec. 08th 2014, 14:30

Salle Claude Itzykson, Bât. 774, Orme des Merisiers

The efficiency of a heat engine is traditionally defined as the ratio of its average output work over its average input heat. Its highest possible value was discovered by Carnot in 1824 and is a cornerstone concept in thermodynamics. It led to the discovery of the second law and to the definition of the Kelvin temperature scale. Small-scale engines operate in the presence of highly fluctuating input and output energy fluxes. They are therefore much better characterized by fluctuating efficiencies. In this study, using the fluctuation theorem, we identify universal features of efficiency fluctuations. While the standard thermodynamic efficiency is, as expected, the most likely value, we find that the Carnot efficiency is, surprisingly, the least likely in the long time limit in the case of a symmetric driving protocol. More generally, the long-time probability for observing a reversible efficiency in a given engine is identical to that for the same engine working under the time-reversed driving. Furthermore, the probability distribution for the efficiency assumes a universal scaling form when operating close-to-equilibrium. We illustrate our results analytically and numerically on several model systems, including the work-to-work conversion via a Brownian particle, effusion as a thermal engine, and an asymmetrically driven quantum dot.

Contact : lbervas